In soil science, pedotransfer functions (PTF) are predictive functions of certain soil properties using data from soil surveys.
The term pedotransfer function was coined by Johan Bouma as translating data we have into what we need. The most readily available data comes from a soil survey, such as the field morphology, soil texture, structure and pH. Pedotransfer functions add value to this basic information by translating them into estimates of other more laborious and expensively determined soil properties. These functions fill the gap between the available soil data and the properties which are more useful or required for a particular model or quality assessment. Pedotransfer functions utilize various regression analysis and data mining techniques to extract rules associating basic soil properties with more difficult to measure properties.
Although not formally recognized and named until 1989, the concept of the pedotransfer function has long been applied to estimate soil properties that are difficult to determine. Many soil science agencies have their own (unofficial) rule of thumb for estimating difficult-to-measure soil properties. Probably because of the particular difficulty, cost of measurement, and availability of large databases, the most comprehensive research in developing PTFs has been for the estimation of water retention curve and hydraulic conductivity.
The first PTF came from the study of Lyman Briggs and McLane (1907). They determined the wilting coefficient, which is defined as percentage water content of a soil when the plants growing in that soil are first reduced to a wilted condition from which they cannot recover in an approximately saturated atmosphere without the addition of water to the soil, as a function of particle-size:
Wilting coefficient = 0.01 sand + 0.12 silt + 0.57 clay
With the introduction of the field capacity (FC) and permanent wilting point (PWP) concepts by Frank Veihmeyer and Arthur Hendricksen (1927), research during the period 1950-1980 attempted to correlate particle-size distribution, bulk density and organic matter content with water content at field capacity (FC), permanent wilting point (PWP), and available water capacity (AWC).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
Couvre l'estimation du stock d'eau du sol et la gestion de l'irrigation.
Discute de la modélisation des transferts d'eau avec l'équation de Richards, y compris les fonctions hydrauliques du sol, les méthodes numériques, les conditions aux limites et l'impact de l'irrigation.
Couvre l'introduction à la science des sols, ses fonctions écosystémiques, la nature finie du sol et ses diverses fonctions telles que la production et la réglementation.
Hydrological and climatic modeling of near-surface water and energy fluxes is critically dependent on the availability of soil hydraulic parameters. Key among these parameters is the soil water characteristic curve (SWCC), a function relating soil water co ...
The estimation of plant-available soil water (PASW) is essential to quantify transpiration fluxes, the onset of heatwaves, irrigation water management, land-use decisions, vegetation ecology, and land surface memory in climate models. PASW is the amount of ...
Hydrological, ecohydrological, and terrestrial biosphere models depend on pedotransfer functions for computing soil hydraulic parameters based on easily measurable variables, such as soil textural and physical properties. Several pedotransfer functions hav ...