Les séquences régulatrices, appelées aussi séquence-cis, sont une partie de l’ADN non codant (séquences du génome qui ne sont pas traduites en protéines) et qui influent sur le niveau de transcription des gènes. Elles sont reconnues par des facteurs de transcription, appelés facteur-trans, qui agissent de différentes façons, en augmentant ou en diminuant l’expression du gène. Les séquences régulatrices interviennent ainsi au niveau de l’initiation de la transcription dans la régulation de l'expression des gènes. Les promoteurs sont tout d’abord identifiés comme les éléments essentiels à la transcription, étant le lieu d’attache de l’ARN polymérase et de facteurs généraux de la transcription nécessaires à l’initiation. Des régions modulant la transcription ont ensuite été identifiées comme des amplificateurs chez les eucaryotes. Ces derniers sont pour la plupart situés en amont du promoteur, lui-même situé en amont de la séquence codante. Ils sont même parfois placés à une grande distance, atteignant plus de 10 kb du site d’initiation de la transcription. Les facteurs de transcription peuvent ainsi induire des repliements de l’ADN pour assurer un contact avec le complexe initiateur.
La plupart des gènes eucaryotes sont sous le contrôle de multiples éléments régulateurs. Un même élément peut agir sur plusieurs gènes et un gène donné peut être sous le contrôle d’une combinaison d’éléments. Différentes combinaisons de facteurs assurent le contrôle et la coordination de l’ensemble des gènes.
Les séquences régulatrices pourraient représenter environ 17 % du génome humain alors que les régions codantes des gènes (exons) pourraient en représenter 2,9 % selon une estimation du projet ENCODE dont l'objectif est de déterminer les fonctions de toutes les parties du génome humain. Les séquences régulatrices étaient autrefois considérées comme faisant partie de l’ADN non codant puisque leurs fonctions étaient mal comprises.
Il est possible de fusionner l’ADN des séquences régulatrices à l’ADN codant grâce à un gène rapporteur.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Un gène, du grec ancien (« génération, naissance, origine »), est, en biologie, une séquence discrète et héritable de nucléotides dont l'expression affecte les caractères d'un organisme. L'ensemble des gènes et du matériel non codant d'un organisme constitue son génome. Un gène possède donc une position donnée dans le génome d'une espèce, on parle de locus génique. La séquence est généralement formée par des désoxyribonucléotides, et est donc une séquence d'ADN (par des ribonucléotides formant de l'ARN dans le cas de certains virus), au sein d'un chromosome.
Cis-regulatory elements (CREs) or Cis''-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology. CREs are found in the vicinity of the genes that they regulate. CREs typically regulate gene transcription by binding to transcription factors.
La boîte TATA (TATA box ou Goldberg-Hogness box en anglais) est une séquence d'ADN (un élément cis-régulateur) présente au niveau de la séquence promotrice d'une partie des gènes des eucaryotes . Cette séquence d'ADN codée TATA se situe à environ 25 nucléotides en amont du premier nucléotide transcrit (N+1). Cette séquence sert en partie de lieu de reconnaissance à l'ARN polymérase chez les eucaryotes. Chez les procaryotes, il existe aussi un autre ensemble de séquence jouant un rôle similaire.
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
This course integrates knowledge in basic, systems, clinical and computational neuroscience, and engineering with the goal of translating this integrated knowledge into the development of novel method
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
Explore l'impact de la variation réglementaire sur la médecine de précision, en se concentrant sur les SNP GWAS non codants et la variation de l'expression des gènes.
Explore la conception et les applications des commutateurs d'ARN, en mettant l'accent sur les principes réglementaires d'ARN et les composants biomoléculaires conçus.
Discute de la plasticité développementale, du polyphénisme, de la symbiose, de l'assimilation génétique et des gènes Hox dans l'évolution.
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been di ...
The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...
EPFL2024
, ,
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual s ...