Strained silicon is a layer of silicon in which the silicon atoms are stretched beyond their normal interatomic distance. This can be accomplished by putting the layer of silicon over a substrate of silicon–germanium (). As the atoms in the silicon layer align with the atoms of the underlying silicon germanium layer (which are arranged a little farther apart, with respect to those of a bulk silicon crystal), the links between the silicon atoms become stretched - thereby leading to strained silicon. Moving these silicon atoms farther apart reduces the atomic forces that interfere with the movement of electrons through the transistors and thus better mobility, resulting in better chip performance and lower energy consumption. These electrons can move 70% faster allowing strained silicon transistors to switch 35% faster.
More recent advances include deposition of strained silicon using metalorganic vapor-phase epitaxy (MOVPE) with metalorganics as starting sources, e.g. silicon sources (silane and dichlorosilane) and germanium sources (germane, germanium tetrachloride, and isobutylgermane).
More recent methods of inducing strain include doping the source and drain with lattice mismatched atoms such as germanium and carbon. Germanium doping of up to 20% in the P-channel MOSFET source and drain causes uniaxial compressive strain in the channel, increasing hole mobility. Carbon doping as low as 0.25% in the N-channel MOSFET source and drain causes uniaxial tensile strain in the channel, increasing electron mobility. Covering the NMOS transistor with a highly stressed silicon nitride layer is another way to create uniaxial tensile strain. As opposed to wafer-level methods of inducing strain on the channel layer prior to MOSFET fabrication, the aforementioned methods use strain induced during the MOSFET fabrication itself to alter the carrier mobility in the transistor channel.
The idea of using germanium to strain silicon for the purpose of improving field-effect transistors appears to go back at least as far as 1991.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Dans le domaine des semi-conducteurs, le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés de conductivité. Les propriétés des semi-conducteurs sont en grande partie régies par la quantité de porteurs de charge qu'ils contiennent. Ces porteurs sont les électrons ou les trous. Le dopage d'un matériau consiste à introduire, dans sa matrice, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire davantage d'électrons ou de trous.
Explore l'implantation d'ions dans le silicium pour la fabrication de transistors et de diodes, couvrant les étapes, les défis, les solutions et les niveaux de dopage.
Explore le transport électronique dans les semi-conducteurs, y compris la mobilité, la diffusion des impuretés et les puits de potentiel d'hétérostructure.
This thesis reports on the study and use of low temperature processes for the deposition of indium gallium nitride (InGaN) thin films in order to alleviate some of the present drawbacks of its monolitic deposition on silicon for photovoltaic applications. ...
EPFL2023
Selective area epitaxy (SAE), applied to semiconductor growth, allows tailored fabrication of intricate structures at the nanoscale with enhanced properties and functionalities. In the field of nanowires (NWs), it adds scalability by enabling the fabricati ...
EPFL2024
,
A time-resolved multi-gate ion sensitive field effect transducer, including a silicon layer, a P-doped region in the silicon layer and a first electrode in electric connection with the P doped region, a N-doped region in the silicon layer and a second elec ...