Concept

Pappus configuration

In geometry, the Pappus configuration is a configuration of nine points and nine lines in the Euclidean plane, with three points per line and three lines through each point. This configuration is named after Pappus of Alexandria. Pappus's hexagon theorem states that every two triples of collinear points ABC and abc (none of which lie on the intersection of the two lines) can be completed to form a Pappus configuration, by adding the six lines Ab, aB, Ac, aC, Bc, and bC, and their three intersection points X = Ab·aB, Y = Ac·aC, and Z = Bc·bC. These three points are the intersection points of the "opposite" sides of the hexagon AbCaBc. According to Pappus' theorem, the resulting system of nine points and eight lines always has a ninth line containing the three intersection points X, Y, and Z, called the Pappus line. The Pappus configuration can also be derived from two triangles XcC and YbB that are in perspective with each other (the three lines through corresponding pairs of points meet at a single crossing point) in three different ways, together with their three centers of perspectivity Z, a, and A. The points of the configuration are the points of the triangles and centers of perspectivity, and the lines of the configuration are the lines through corresponding pairs of points. The Levi graph of the Pappus configuration is known as the Pappus graph. It is a bipartite symmetric cubic graph with 18 vertices and 27 edges. The Desargues configuration can also be defined in terms of perspective triangles, and the Reye configuration can be defined analogously from two tetrahedra that are in perspective with each other in four different ways, forming a desmic system of tetrahedra. For any nonsingular cubic plane curve in the Euclidean plane, three real inflection points of the curve, and a fourth point on the curve, there is a unique way of completing these four points to form a Pappus configuration in such a way that all nine points lie on the curve.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (2)
Configuration (géométrie)
En géométrie, une configuration est la donnée de plusieurs éléments géométriques (points, droites, cercles, plans, angles, vecteurs...) munis de relations associées (appartenance ou incidence, parallélisme, orthogonalité...) Le terme est présent dans l’enseignement des mathématiques en France depuis 1990 en remplacement parfois du mot « figure » mais en distinguant plus spécifiquement le rôle des éléments. Ainsi, on peut considérer par exemple la configuration du théorème de Thalès ou la configuration de Möbius.
Graphe de Levi
En mathématiques, et plus particulièrement en combinatoire, un graphe de Levi ou graphe d'incidence est un graphe biparti associé à une structure d'incidence. À partir d'un ensemble de points et de droites dans une géométrie d'incidence ou une configuration géométrique, on forme un graphe avec un sommet par point, un sommet par droite et une arête pour chaque incidence entre un point et une droite. Ces graphes sont nommés d'après Friedrich Wilhelm Levi, qui les a décrit dans des publications en 1942.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.