A nitrogen laser is a gas laser operating in the ultraviolet range (typically 337.1 nm) using molecular nitrogen as its gain medium, pumped by an electrical discharge.
The wall-plug efficiency of the nitrogen laser is low, typically 0.1% or less, though nitrogen lasers with efficiency of up to 3% have been reported in the literature. The wall-plug efficiency is the product of the following three efficiencies:
electrical: TEA laser
gain medium: This is the same for all nitrogen lasers and thus has to be at least 3%
inversion by electron impact is 10 to 1 due to Franck–Condon principle
energy lost in the lower laser level: 40%
optical: More stimulated emission than spontaneous emission
The gain medium is nitrogen molecules in the gas phase. The nitrogen laser is a three-level laser. In contrast to more typical four-level lasers, the upper laser level of nitrogen is directly pumped, imposing no speed limits on the pump. Pumping is normally provided by direct electron impact; the electrons must have sufficient energy, or they will fail to excite the upper laser level. Typically reported optimum values are in the range of 80 to 100 eV per Torr·cm pressure of nitrogen gas.
There is a 40 ns upper limit of laser lifetime at low pressures and the lifetime becomes shorter as the pressure increases. The lifetime is only 1 to 2 ns at 1 atmosphere. In general
The strongest lines are at 337.1 nm wavelength in the ultraviolet. Other lines have been reported at 357.6 nm, also ultraviolet. This information refers to the second positive system of molecular nitrogen, which is by far the most common. No vibration of the two nitrogen atoms is involved, because the atom-atom distance does not change with the electronic transition. The rotation needs to change to deliver the angular momentum of the photon, furthermore multiple rotational states are populated at room temperature. There are also lines in the far-red and infrared from the first positive system, and a visible blue laser line from the molecular nitrogen positive (1+) ion.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course gives an introduction to Lasers by both considering fundamental principles and applications. Topics that are covered include the theory of lasers, laser resonators and laser dynamics.
In
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
This course introduces the basic principles of lasers to then focus on the latest developments in ultrafast radiation sources, including X-ray and gamma-ray sources, attosecond pulses generation, free
Un laser à excimère, parfois appelé (et de façon souvent plus appropriée) laser à exciplexe, est un type de laser ultraviolet couramment utilisé en chirurgie oculaire et en photolithographie dans l'industrie des semiconducteurs. Un excimère est un dimère qui n'est stable qu'à l'état excité et se dissocie à l'état fondamental, tandis qu'un exciplexe est un complexe qui n'est stable qu'à l'état excité et se dissocie à l'état fondamental ; un excimère est donc un cas particulier d'exciplexe.
vignette|redresse=1.5|Diagramme montrant le spectre électromagnétique dans lequel se distinguent plusieurs domaines spectraux (dont celui des UV) en fonction des longueurs d'onde (avec des exemples de tailles), les fréquences correspondantes, et les températures du corps noir dont l'émission est maximum à ces longueurs d'onde. Le rayonnement ultraviolet (UV), également appelé « lumière noire » parce que généralement invisible à l’œil nu, est un rayonnement électromagnétique de longueur d'onde inférieure à celle de la lumière visible, mais supérieure à celle des .
Explore les oscillations de relaxation dans les diodes laser et le bruit d'intensité relative, couvrant la modulation laser et la mesure des écarts de fréquence.
Explore les autocorrélateurs dans les systèmes laser, couvrant le fonctionnement de base, les caractéristiques de bruit, les lasers ultrarapides et la conversion de fréquence.
Explore le processus d'amplification de la lumière et sa relation avec la structure atomique, les coefficients d'absorption et les indices de réfraction.
Laser-induced forward transfer (LIFT) technique is an emerging micro additive manufacturing (AM) technique that has been widely used to print a variety of materials. Distinguished from other nozzle-based AM techniques, LIFT operates without the existence o ...
EPFL2023
, , , , , ,
Erbium-doped fibre lasers exhibit high coherence and low noise as required for fibre-optic sensing, gyroscopes, LiDAR and optical frequency metrology. Endowing erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-nois ...
Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au–Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metall ...