Concept

Nitrogen laser

Résumé
A nitrogen laser is a gas laser operating in the ultraviolet range (typically 337.1 nm) using molecular nitrogen as its gain medium, pumped by an electrical discharge. The wall-plug efficiency of the nitrogen laser is low, typically 0.1% or less, though nitrogen lasers with efficiency of up to 3% have been reported in the literature. The wall-plug efficiency is the product of the following three efficiencies: electrical: TEA laser gain medium: This is the same for all nitrogen lasers and thus has to be at least 3% inversion by electron impact is 10 to 1 due to Franck–Condon principle energy lost in the lower laser level: 40% optical: More stimulated emission than spontaneous emission The gain medium is nitrogen molecules in the gas phase. The nitrogen laser is a three-level laser. In contrast to more typical four-level lasers, the upper laser level of nitrogen is directly pumped, imposing no speed limits on the pump. Pumping is normally provided by direct electron impact; the electrons must have sufficient energy, or they will fail to excite the upper laser level. Typically reported optimum values are in the range of 80 to 100 eV per Torr·cm pressure of nitrogen gas. There is a 40 ns upper limit of laser lifetime at low pressures and the lifetime becomes shorter as the pressure increases. The lifetime is only 1 to 2 ns at 1 atmosphere. In general The strongest lines are at 337.1 nm wavelength in the ultraviolet. Other lines have been reported at 357.6 nm, also ultraviolet. This information refers to the second positive system of molecular nitrogen, which is by far the most common. No vibration of the two nitrogen atoms is involved, because the atom-atom distance does not change with the electronic transition. The rotation needs to change to deliver the angular momentum of the photon, furthermore multiple rotational states are populated at room temperature. There are also lines in the far-red and infrared from the first positive system, and a visible blue laser line from the molecular nitrogen positive (1+) ion.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.