A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz.
This bandwidth is also known as the terahertz gap because it is noticeably underutilized. This is because terahertz waves are electromagnetic waves with frequencies higher than microwaves but lower than infrared radiation and visible light. These characteristics mean that it is difficult to influence terahertz radiation with conventional electronic components and devices. Electronics technology controls the flow of electrons, and is well developed for microwaves and radio frequencies. Likewise, the terahertz gap also borders optical or photonic wavelengths; the infrared, visible, and ultraviolet ranges (or spectrums), where well developed lens technologies also exist. However, the terahertz wavelength, or frequency range, appears to be useful for security screening, medical imaging, wireless communications systems, non-destructive evaluation, and chemical identification, as well as submillimeter astronomy. Finally, as a non-ionizing radiation it does not have the risks inherent in X-ray screening.
Currently, a fundamental lack in naturally occurring materials that allow for the desired electromagnetic response has led to constructing new artificial composite materials, termed metamaterials. The metamaterials are based on a lattice structure which mimics crystal structures. However, the lattice structure of this new material consists of rudimentary elements much larger than atoms or single molecules, but is an artificial, rather than a naturally occurring structure. Yet, the interaction achieved is below the dimensions of the terahertz radiation wave. In addition, the desired results are based on the resonant frequency of fabricated fundamental elements. The appeal and usefulness is derived from a resonant response that can be tailored for specific applications, and can be controlled electrically or optically.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave (EM wave) interacts with a metamaterial. This translates into the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation.
A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure. The subwavelength periodicity distinguishes photonic metamaterials from photonic band gap or photonic crystal structures. The cells are on a scale that is magnitudes larger than the atom, yet much smaller than the radiated wavelength, are on the order of nanometers.
A nonlinear metamaterial is an artificially constructed material that can exhibit properties not yet found in nature. Its response to electromagnetic radiation can be characterized by its permittivity and material permeability. The product of the permittivity and permeability results in the refractive index. Unlike natural materials, nonlinear metamaterials can produce a negative refractive index. These can also produce a more pronounced nonlinear response than naturally occurring materials.
Explore la conception et les applications de métasurfaces reconfigurables dans l'optique avancée, y compris les métamatériaux magnétiques commutables et les métasurfaces réactives.
Discute de l'évolution des métamatériaux des micro-ondes à l'optique, en présentant les défis et les progrès de la miniaturisation et de la réalisation de matériaux 3D.
Mitigating the energy requirements of artificial intelligence requires novel physical substrates for computation. Phononic metamaterials have vanishingly low power dissipation and hence are a prime candidate for green, always-on computers. However, their u ...
Weinheim2024
, ,
This paper presents a solution to overcome the inherently limited bandwidth of substrate-integrated waveguide (SIW) slot antennas. It is analytically shown that by decreasing the permittivity of a dielectric loaded slot antenna, the resulting bandwidth inc ...
2024
, , ,
Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy c ...