Reliability, availability and serviceability (RAS), also known as reliability, availability, and maintainability (RAM), is a computer hardware engineering term involving reliability engineering, high availability, and serviceability design. The phrase was originally used by International Business Machines (IBM) as a term to describe the robustness of their mainframe computers. Computers designed with higher levels of RAS have many features that protect data integrity and help them stay available for long periods of time without failure This data integrity and uptime is a particular selling point for mainframes and fault-tolerant systems. While RAS originated as a hardware-oriented term, systems thinking has extended the concept of reliability-availability-serviceability to systems in general, including software. Reliability can be defined as the probability that a system will produce correct outputs up to some given time t. Reliability is enhanced by features that help to avoid, detect and repair hardware faults. A reliable system does not silently continue and deliver results that include uncorrected corrupted data. Instead, it detects and, if possible, corrects the corruption, for example: by retrying an operation for transient (soft) or intermittent errors, or else, for uncorrectable errors, isolating the fault and reporting it to higher-level recovery mechanisms (which may failover to redundant replacement hardware, etc.), or else by halting the affected program or the entire system and reporting the corruption. Reliability can be characterized in terms of mean time between failures (MTBF), with reliability = exp(-t/MTBF). Availability means the probability that a system is operational at a given time, i.e. the amount of time a device is actually operating as the percentage of total time it should be operating. High-availability systems may report availability in terms of minutes or hours of downtime per year. Availability features allow the system to stay operational even when faults do occur.
David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Ali Pahlevan