Résumé
vignette|300px|Exemple de cycle catalytique : le procédé Monsanto. En chimie, un cycle catalytique est un terme désignant un mécanisme réactionnel à plusieurs étapes impliquant un catalyseur. Le cycle catalytique est la principale façon de décrire le rôle des catalyseurs en biochimie, chimie organométallique, science des matériaux Souvent, de tels cycles montrent la conversion d'un précatalyseur en catalyseur. Comme les catalyseurs sont régénérés, les cycles catalytiques sont habituellement écrits comme une séquence de réactions chimiques en forme de boucle. Dans de telles boucles, l'étape initiale implique la liaison d'un ou plusieurs réactifs avec le catalyseur, et l'étape finale est la formation du produit et la régénération du catalyseur. vignette|center|350px|Cycle catalytique de la conversion de A et B en C. Un cycle catalytique n'est pas nécessairement un mécanisme réactionnel en entier. Par exemple, on peut avoir détecté un intermédiaire réactionnel, tout en ne sachant pas par quel mécanisme la réaction s'est produite. Les cycles catalytiques ont aussi un rôle important en chimie atmosphérique, par exemple dans les réactions menant à la destruction de la couche d'ozone. L'interaction complexe entre différents régimes, impliquant également des cycles nuls qui n'ont pas d'effet global, détermine le taux de production et de destruction de nombreux composants atmosphériques. Souvent un catalyseur dit « sacrificiel » fait également partie du système de réaction dans le but de régénérer le catalyseur vrai pour chaque cycle. Comme son nom l'indique, le catalyseur sacrificiel n'est pas régénéré mais irréversiblement consommé, ce qui correspond au contraire d'un catalyseur. Ce composé sacrificiel est également connu comme catalyseur stœchiométrique lorsqu'il est ajouté en quantité stœchiométrique par rapport au réactif principal. Généralement, le vrai catalyseur est une molécule complexe et coûteuse et est ajouté en quantité aussi faible que possible. Le catalyseur sacrificiel ou stœchiométrique se doit par contre d'être abondant et peu coûteux.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
CH-432: Structure and reactivity
To develop a detailed knowledge of the key steps of advanced modern organic synthesis going beyond classical chemistry of olefins and carbonyls.
CH-422: Catalyst design for synthesis
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
ChE-403: Heterogeneous reaction engineering
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
Afficher plus
Séances de cours associées (34)
Réactions asymétriques catalytiques
Explore les réactions asymétriques catalytiques en chimie organique, couvrant des sujets comme l'induction asymétrique, la résolution cinétique et l'activation du catalyseur.
Catalyse : Fondements de la réaction des coques
Discute des fondamentaux de la réaction de Heck dans la catalyse et des stratégies pour améliorer son efficacité.
Réactions asymétriques catalytiques en chimie organique
Explore les réactions asymétriques catalytiques en chimie organique, en mettant l'accent sur les approches radicales et la catalyse photorédoxe.
Afficher plus
Publications associées (228)