Concept

Pumpable ice technology

Résumé
Pumpable ice technology (PIT) uses thin liquids, with the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide. Beyond generic terms, such as pumpable, jelly, or slurry ice, there are many trademark names for such coolant, like "Deepchill", “Beluga”, “optim”, “flow”, “fluid”, “jel”, “binary”, “liquid”, “maxim”, “whipped”, and “bubble slurry” ice. These trademarks are authorized by industrial ice maker production companies in Australia, Canada, China, Germany, Iceland, Israel, Russia, Spain, United Kingdom, and USA. Pumpable ice can be produced in one of two ways: either by mixing crushed ice with a liquid or by freezing water within a liquid. The primary way is to manufacture commonly used forms of crystal solid ice, such as plate, tube, shell or flake ice, by crushing and mixing it with water. This mixture of different ice concentrations and particle dimensions (ice crystals can vary in length from 200 μm to 10 mm) is passed by pumps from a storage tank to the consumer. The constructions, specifications and applications of current conventional ice makers are described in this reference: The secondary way is to create the crystallization process inside the volume of the cooled liquid. This crystallization inside can be accomplished using vacuum or cooling technologies. In vacuum technology, very low pressure forces a small part of the water to evaporate while the remaining water freezes, forming a water-ice mixture. Depending on the additive concentrations, the final temperature of pumpable ice is between zero and –4 °C. The large volume of vapor and an operating pressure of about 6 mbar (600 Pa) require the use of a water vapor compressor with a great swept volume. This technology is economically reasonable and can be recommended for systems with a cooling capacity of 1 MW (300 ton of refrigeration; 3.5 million BTU/h) or larger.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.