Publications associées (32)

Generalization and Personalization of Machine Learning for Multimodal Mobile Sensing in Everyday Life

Lakmal Buddika Meegahapola

A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
EPFL2024

DChannel: Accelerating Mobile ApplicationsWith Parallel High-bandwidth and Low-latency Channels

Haitham Al Hassanieh

Interactive mobile applications like web browsing and gaming are known to benefit significantly from low latency networking, as applications communicate with cloud servers and other users' devices. Emerging mobile channel standards have not met these needs ...
USENIX ASSOC2023

Increasing Cellular Network Energy Efficiency for Railway Corridors

Andreas Peter Burg, Adrian Schumacher, Ruben Merz

Modern trains act as Faraday cages making it challenging to provide high cellular data capacities to passengers. A solution is the deployment of linear cells along railway tracks, forming a cellular corridor. To provide a sufficiently high data capacity, m ...
IEEE2022

Beam Selection and Tracking for Amplify-and-Forward Repeaters

Andreas Peter Burg, Adrian Schumacher, Ruben Merz

Mobile network operators constantly have to upgrade their cellular network to satisfy the public's hunger for increasing data capacity. However, regulatory limits regarding allowed electromagnetic field strength on existing cell sites often limit or preven ...
IEEE2022

Development of Thin Film Lithium Niobate Shear Bulk Acoustic Wave Resonators

Soumya Yandrapalli

RF MEMS piezoelectric acoustic resonators are the essential building blocks for RF filters used in RF front-end modules for wireless mobile communication due to their compact size in the MHz-GHz frequency range, high Quality factors and large relative band ...
EPFL2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.