Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Nuclear magnetic resonance quantum computerNuclear magnetic resonance quantum computing (NMRQC) is one of the several proposed approaches for constructing a quantum computer, that uses the spin states of nuclei within molecules as qubits. The quantum states are probed through the nuclear magnetic resonances, allowing the system to be implemented as a variation of nuclear magnetic resonance spectroscopy. NMR differs from other implementations of quantum computers in that it uses an ensemble of systems, in this case molecules, rather than a single pure state.
Quantum foundationsQuantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.
Processeur Sycamoredroite|vignette| Le processeur Sycamore Sycamore est un processeur quantique créé par la division Intelligence artificielle de Google. Il a 70 qubits. En 2019, Sycamore a réalisé une tâche informatique en 200 secondes qui, selon Google, dans un article publié dans Nature, prendrait 10 000 ans à un supercalculateur à la pointe de la technologie. Ainsi, Google prétendait avoir atteint la suprématie quantique. Pour estimer le temps que prendrait un superordinateur classique, Google a exécuté des parties de la simulation du circuit quantique sur le Summit, l'ordinateur classique le plus puissant au monde.
Physique expérimentalevignette|La physique expérimentale peut parfois recourir à des instruments de très grandes dimensions : ici, construction du détecteur CMS (Compact Muon Solenoid) du Grand collisionneur de hadrons (LHC) au CERN, en 2003. Les techniciens présents en bas de l'image donnent une idée des dimensions réelles de cet ensemble (15 m de diamètre, 21 m de long, pour un poids de 14 000 tonnes) installé 100 mètres sous la surface du sol.