Résumé
Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen). Several groups of bacteria can conduct anoxygenic photosynthesis: green sulfur bacteria (GSB), red and green filamentous phototrophs (FAPs e.g. Chloroflexia), purple bacteria, acidobacteriota, and heliobacteria. Some archaea (e.g. Halobacterium) capture light energy for metabolic function and are thus phototrophic but none are known to "fix" carbon (i.e. be photosynthetic). Instead of a chlorophyll-type receptor and electron transport chain, proteins such as halorhodopsin capture light energy with the aid of diterpenes to move ions against a gradient and produce ATP via chemiosmosis in the manner of mitochondria. The photopigments used to carry out anaerobic photosynthesis are similar to chlorophyll but differ in molecular detail and peak wavelength of light absorbed. Bacteriochlorophylls a through g absorb electromagnetic radiation maximally in the near-infrared within their natural membrane milieu. This differs from chlorophyll a, the predominant plant and cyanobacteria pigment, which has peak absorption wavelength approximately 100 nanometers shorter (in the red portion of the visible spectrum). There are two main types of anaerobic photosynthetic electron transport chains in bacteria. The type I reaction centers are found in GSB, Chloracidobacterium, and Heliobacteria, while the type II reaction centers are found in FAPs and purple bacteria. The electron transport chain of green sulfur bacteria — such as is present in the model organism Chlorobaculum tepidum — uses the reaction center bacteriochlorophyll pair, P840. When light is absorbed by the reaction center, P840 enters an excited state with a large negative reduction potential, and so readily donates the electron to bacteriochlorophyll 663, which passes it on down an electron transport chain.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.