No-hiding theoremThe no-hiding theorem states that if information is lost from a system via decoherence, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the linearity and unitarity of quantum mechanics. Thus, information is never lost. This has implications in black hole information paradox and in fact any process that tends to lose information completely.
No-broadcasting theoremIn physics, the no-broadcasting theorem is a result of quantum information theory. In the case of pure quantum states, it is a corollary of the no-cloning theorem. The no-cloning theorem for pure states says that it is impossible to create two copies of an unknown state given a single copy of the state. Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more recipients.
Quantum operationIn quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment.
Algorithme de GroverEn informatique quantique, l’algorithme de Grover est un algorithme de recherche, permettant de rechercher un ou plusieurs éléments qui répondent à un critère donné parmi éléments non classés en temps proportionnel à et avec un espace de stockage proportionnel à . Il a été découvert par Lov Grover en 1996. Dans les mêmes conditions (recherche parmi des éléments non classés), un algorithme classique ne peut faire mieux qu'une recherche dans un temps proportionnel à , en testant successivement le critère sur chaque élément.
Separable stateIn quantum mechanics, separable states are quantum states belonging to a composite space that can be factored into individual states belonging to separate subspaces. A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard. Consider first composite states with two degrees of freedom, referred to as bipartite states. By a postulate of quantum mechanics these can be described as vectors in the tensor product space .
Quantum noiseQuantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents. Quantified noise is similar to classical noise theory and will not always return an asymmetric spectral density.
Schrödinger–HJW theoremIn quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently (albeit partially) by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N.