Résumé
In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities). The process of planetary differentiation is mediated by partial melting with heat from radioactive isotope decay and planetary accretion. Planetary differentiation has occurred on planets, dwarf planets, the asteroid 4 Vesta, and natural satellites (such as the Moon). High-density materials tend to sink through lighter materials. This tendency is affected by the relative structural strengths, but such strength is reduced at temperatures where both materials are plastic or molten. Iron, the most common element that is likely to form a very dense molten metal phase, tends to congregate towards planetary interiors. With it, many siderophile elements (i.e. materials that readily alloy with iron) also travel downward. However, not all heavy elements make this transition as some chalcophilic heavy elements bind into low-density silicate and oxide compounds, which differentiate in the opposite direction. The main compositionally differentiated zones in the solid Earth are the very dense iron-rich metallic core, the less dense magnesium-silicate-rich mantle and the relatively thin, light crust composed mainly of silicates of aluminium, sodium, calcium and potassium. Even lighter still are the watery liquid hydrosphere and the gaseous, nitrogen-rich atmosphere. Lighter materials tend to rise through material with a higher density. A light mineral such as plagioclase would rise. They may take on dome-shaped forms called diapirs when doing so. On Earth, salt domes are salt diapirs in the crust which rise through surrounding rock. Diapirs of molten low-density silicate rocks such as granite are abundant in the Earth's upper crust. The hydrated, low-density serpentinite formed by alteration of mantle material at subduction zones can also rise to the surface as diapirs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.