PHYS-432: Quantum field theory IIThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-426: Quantum physics IVIntroduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
PHYS-415: Particle physics IPresentation of particle properties, their symmetries and interactions.
Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-344: Quantum mechanics for non-physicistsThis course introduces quantum mechanics to students who are interested in pursuing quantum science and technology but have not gone through the standard bachelor physics curriculum. The students will
PHYS-425: Quantum physics IIITo introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics
PHYS-106(h): General physics : thermodynamicsLe but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-201(b): General physics: electromagnetismThe course covers the phenomena, concepts and principles of electricity and magnetism illustrating some of their applications. The unity of the electric, magnetic and optical phenomena and the variety
CH-453: Molecular quantum dynamicsThe course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.