Résumé
Le ruthénium est l'élément chimique de numéro atomique 44, de symbole Ru. Le ruthénium fait partie du groupe du platine, un sous-groupe de métaux de transition. Le corps simple ruthénium est un métal dur et cassant à température ambiante. Le ruthénium a été identifié dans les résidus poudreux noirs de production de platine et isolé en 1844 par le chimiste Carl Ernst Klaus, dit affectueusement en russe Karl Karlovitch (Klaus) ou Karl Karlovic Klaus en ukrainien. Il a montré que l'oxyde de ruthénium contenait un nouveau métal inconnu et en a extrait six grammes de la partie insoluble dans l'eau régale du platine brut. Le ruthénium, probablement en faible teneur ou à l'état de traces, avait déjà échappé à l'analyse de Smithson Tennant en 1803 et 1804. Jöns Jacob Berzelius émit un doute suivi d'un véto scientifique sur les travaux, probablement maladroitement rédigés, du pharmacien chimiste Gottfried Osann, alors en poste à l'école de chimie de Dorpat en Estonie qui pensait l'avoir découvert en 1828. Ce dernier chercheur avait en effet examiné les résidus de la dissolution du platine brut des montagnes russes de l'Oural dans l'eau régale et assurait avoir trouvé trois nouveaux éléments dans la liqueur jaune (en réalité Ir, Rh, Ru) et, plein d'assurance, il avait nommé l'un d'entre eux encore inconnu « ruthénium », signifiant en latin "relatif à la Russie". Berzelius en refaisant l'expérience n'avait pas trouvé de nouveau métal en quantité significative, puisque, averti des travaux anglo-saxons, il connaissait l'iridium et le rhodium. En 1844, le métal ruthénium a été obtenu pour la première fois par Karl Karlovitch Klaus à l'état pur et surtout en quantité. Ce chercheur estonien né à Dorpat, russe d'origine allemande, travaillant à l'université de Kazan réexamine avec prudence des résidus similaires, développe la chimie du ruthénium, confirme les travaux pionniers d'Osann sur cet élément précis et maintient la dénomination de « Ruthénium », adaptation du latin Ruthenia « Russie ».
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
CH-422: Catalyst design for synthesis
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
CH-223: Organometallic chemistry
Basic organometallic chemistry will be covered in this course.
  1. Structure and bonding in organometallic compounds.
  2. reactivity of organometallic compounds, stoichiometric reactions, catalyzed rea
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Afficher plus