Résumé
Roger Penrose, né le à Colchester, est un mathématicien, cosmologiste et philosophe des sciences britannique. Il enseigne les mathématiques au Birkbeck College de Londres où il élabore la théorie décrivant l'effondrement des étoiles sur elles-mêmes, entre 1964 et 1973, et où il rencontre le célèbre physicien Stephen Hawking. Ils travaillent alors à une théorie de l'origine de l'univers, Penrose apportant sa contribution mathématique à la théorie de la relativité générale appliquée à la cosmologie et à l'étude des trous noirs. Il est actuellement professeur émérite à l'université d'Oxford. En 1974, il publie un article où il présente ses premiers pavages non périodiques : les pavages de Penrose. On lui doit quelques objets impossibles, tels le triangle de Penrose. Conjointement avec Andrea M. Ghez et Reinhard Genzel, il est lauréat du prix Nobel de physique 2020. Né à Colchester, Essex, Roger Penrose est le fils de Margaret (Leathes) et du psychiatre et généticien Lionel Penrose. Ses grands-parents paternels étaient James Doyle Penrose, un artiste d'origine irlandaise, et Elizabeth Josephine Peckover ; ses grands-parents maternels étaient le physiologiste John Beresford Leathes. Diplômé avec mention en mathématiques de l'University College de Londres, Penrose redécouvre en 1955 – alors qu'il était étudiant – une généralisation du concept de matrice inverse, connue sous le terme d'inverse de Moore-Penrose, ou de matrice pseudo-inverse. Penrose obtient son Ph.D. à St John's College (université de Cambridge) en 1958, avec une thèse sur les « méthodes tensorielles en géométrie algébrique » sous la direction d'un algébriste et géomètre renommé : John A. Todd. En 1965, à Cambridge, Penrose prouve par un théorème sur les singularités que des singularités gravitationnelles (comme celles au centre des trous noirs) peuvent être formées à partir de l'effondrement gravitationnel d'étoiles massives en fin de vie. En 1967, Penrose invente la théorie des twisteurs qui projette des objets de l'espace de Minkowski dans un espace complexe possédant une métrique de signature (2,2).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.