Roger Penrose, né le à Colchester, est un mathématicien, cosmologiste et philosophe des sciences britannique.
Il enseigne les mathématiques au Birkbeck College de Londres où il élabore la théorie décrivant l'effondrement des étoiles sur elles-mêmes, entre 1964 et 1973, et où il rencontre le célèbre physicien Stephen Hawking. Ils travaillent alors à une théorie de l'origine de l'univers, Penrose apportant sa contribution mathématique à la théorie de la relativité générale appliquée à la cosmologie et à l'étude des trous noirs. Il est actuellement professeur émérite à l'université d'Oxford.
En 1974, il publie un article où il présente ses premiers pavages non périodiques : les pavages de Penrose. On lui doit quelques objets impossibles, tels le triangle de Penrose.
Conjointement avec Andrea M. Ghez et Reinhard Genzel, il est lauréat du prix Nobel de physique 2020.
Né à Colchester, Essex, Roger Penrose est le fils de Margaret (Leathes) et du psychiatre et généticien Lionel Penrose. Ses grands-parents paternels étaient James Doyle Penrose, un artiste d'origine irlandaise, et Elizabeth Josephine Peckover ; ses grands-parents maternels étaient le physiologiste John Beresford Leathes.
Diplômé avec mention en mathématiques de l'University College de Londres, Penrose redécouvre en 1955 – alors qu'il était étudiant – une généralisation du concept de matrice inverse, connue sous le terme d'inverse de Moore-Penrose, ou de matrice pseudo-inverse.
Penrose obtient son Ph.D. à St John's College (université de Cambridge) en 1958, avec une thèse sur les « méthodes tensorielles en géométrie algébrique » sous la direction d'un algébriste et géomètre renommé : John A. Todd. En 1965, à Cambridge, Penrose prouve par un théorème sur les singularités que des singularités gravitationnelles (comme celles au centre des trous noirs) peuvent être formées à partir de l'effondrement gravitationnel d'étoiles massives en fin de vie.
En 1967, Penrose invente la théorie des twisteurs qui projette des objets de l'espace de Minkowski dans un espace complexe possédant une métrique de signature (2,2).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduce the students to general relativity and its classical tests.
Stephen William Hawking (prononcé ), né le à Oxford et mort le à Cambridge, est un physicien théoricien et cosmologiste britannique. Ses livres et ses apparitions publiques ont fait de ce théoricien de renommée mondiale une célébrité. Depuis l'âge d'une vingtaine d'années, Hawking souffre d'une forme rare de sclérose latérale amyotrophique (SLA) ; sa maladie progresse au fil des ans au point de le laisser presque complètement paralysé.
La relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).
En astrophysique, le terme de censure cosmique (cosmic censorship en anglais) désigne une conjecture à propos de la nature des singularités dans l'espace-temps. Selon elle, il n'existe pas de processus physique donnant naissance à une singularité nue, c'est-à-dire une région de l'espace dont le champ gravitationnel prend des valeurs infinies et qui ne serait pas cachée derrière un horizon des événements. Le terme de « censure cosmique » est entre autres l'œuvre du mathématicien britannique Roger Penrose.
Explore les diagrammes de Penrose pour visualiser l'espacement des trous noirs, soulignant la nature éternelle des trous noirs formés par l'effondrement gravitationnel.
Explore les coordonnées de Kruskal et les trous noirs de Schwarzschild dans la Relativité Générale, y compris les équations d'Einstein et les constantes cosmologiques.
For the plane symmetry we have found the electro-vacuum exact solutions of the Einstein-Maxwell equations and we have shown that one of them is equivalent to the McVittie solution of a charged infinite thin plane. The analytical extension has been accompli ...
A new method of singular reduction is extended from Poisson to Dirac manifolds. Then it is shown that the Dirac structures on the strata of the quotient coincide with those of the only other known singular Dirac reduction method. ...