Brice Tanguy Alphonse LecampionI am currently an assistant Professor and the head of the Geo-Energy Lab - Gaznat Chair on GeoEnergy at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Prior to joining EPFL, I have worked for Schlumberger in research and development from 2006 until May 2015 - serving in a variety of roles ranging from project manager to principal scientist in both Europe and the United States. I received my PhD in mechanics from Ecole Polytechnique, France in 2002 and worked as a research scientist in the hydraulic fracturing research group of CSIRO division of Petroleum resources (Melbourne, Australia) from 2003 to 2006. During my time in Schlumberger R&D, I have worked on problems related to the integrity of deep wells, large scale monitoring of reservoir deformation and more specifically on the stimulation of oil and gas wells by hydraulic fracturing. My current research interests cover hydraulic fracture mechanics, mechanics of porous media and dense suspensions flow.
Jean-François MolinariProfessor J.F. Molinari is the director of the Computational Solid Mechanics Laboratory (http://lsms.epfl.ch) at EPFL, Switzerland. He holds an appointment in the Civil Engineering institute, which he directed from 2013 to 2017, and a joint appointment in the Materials Science institute. He started his tenure at EPFL in 2007, and was promoted to Full Professor in 2012. He is currently an elected member of the Research Council of the Swiss National Science Foundation in Division 2 (Mathematics, Natural and Engineering Sciences), and co editor in chief of the journal Mechanics of Materials. J.F. Molinari graduated from Caltech, USA, in 2001, with a M.S. and Ph.D. in Aeronautics. He held professorships in several countries besides Switzerland, including the United States with a position in Mechanical Engineering at the Johns Hopkins University (2000-2006), and France at Ecole Normale Supérieure Cachan in Mechanics (2005-2007), as well as a Teaching Associate position at the Ecole Polytechnique de Paris (2006-2009). The work conducted by Prof. Molinari and his collaborators takes place at the frontier between traditional disciplines and covers several length scales from atomistic to macroscopic scales. Over the years, Professor Molinari and his group have been developing novel multiscale approaches for a seamless coupling across scales. The activities of the laboratory span the domains of damage mechanics of materials and structures, nano- and microstructural mechanical properties, and tribology. Thomas KellerEDUCATION
1992 Dr. sc. techn. (PhD)
Swiss Federal Institute of Technology, Zurich (ETH)
1983 Dipl. Bauing. ETH (MS civil engineering)
Swiss Federal Institute of Technology, Zurich (ETH)
EMPLOYMENT
2007-present, Full Professor of Structural Engineering (100%)
Swiss Federal Institute of Technology, Lausanne (EPFL)
Civil Engineering Institute
1998-2007, Associate Professor of Structural Engineering (80/100%)
Swiss Federal Institute of Technology, Lausanne (EPFL)
Structural Engineering Institute
Foundation of CCLab in 2000
1996-1998, Assistant Professor of Structural Engineering (50%)
Swiss Federal Institute of Technology, Zurich (ETH)
Department of Architecture
1992-2004, Senior Project Engineer and Joint Owner
Engineering offices in Zug and Zurich
1990-1992, Research Scientist
Swiss Federal Institute of Technology, Zurich (ETH)
Structural Engineering Institute
1986-1990, Project Engineer
Architecture and engineering office Calatrava, Zurich
1983-1986, Teaching and Research Assistant
Swiss Federal Institute of Technology, Zurich (ETH)
Structural Engineering Institute
Andreas MortensenAndreas Mortensen is currently Professor and Director of the Institute of Materials at the Swiss Federal Institute of Technology in Lausanne (EPFL), where he heads the Laboratory for Mechanical Metallurgy. He joined the faculty of EPFL 1997 after ten years, from 1986 to 1996, as a member of the faculty of the Department of Materials Science and Engineering at the Massachusetts Institute of Technology, where he held the successive titles of ALCOA Assistant Professor, Associate Professor, and Professor. His research is focussed on the processing, microstructural development and mechanical behavior of advanced metallic materials with particular focus on metal matrix composites and metal foams, on infiltration processing and capillarity, and on damage and fracture in metallic materials. He is author or co-author of two monographs, around one hundred and eighty scientific or technical publications and twelve patents. Born in San Francisco in 1957, of dual (Danish and US) nationality, Andreas Mortensen graduated in 1980 from the Ecole Nationale Supérieure des Mines de Paris with a Diplôme dIngénieur Civil, and earned his Ph.D. in the Department of Materials Science and Engineering at MIT in 1986. Besides his academic employment, he was a postdoctoral researcher at Nippon Steel during part of 1986, and was invited professor at the Ecole des Mines in Paris during the academic year 1995 to 1996. He is a member of the editorial committee of International Materials Reviews and has co-edited four books. He is a Fellow of ASM, a recipient of the Howe Medal and the Grossman Award of the American Society of Metals, was awarded the Péchiney Prize by the French Academy of Sciences and the Res Metallica Chair from the Katholieke Universiteit Leuven, received three EPFL teaching awards, is one of ISIs Highly Cited authors for Materials Science since 2002 and was awarded an ERC advanced grant in 2012.
Anastasios VassilopoulosPERSONAL INFORMATION Name : Anastasios P. Vassilopoulos email : anastasios.vassilopoulos@epfl.ch Tel: 41 21 6936393 Fax: 41 21 6936240 SUMMARY OF QUALIFICATIONS 1995: Dipl. Mechanical Engineer, University of Patras, Greece 2001: Dr Mechanical Engineer, Doctoral thesis in fatigue of composite materials from the Dept. Mechanical Engineering and Aeronautics, University of Patras, Greece CURRENT POSITION Senior Scientist (MER), Composite Construction Laboaratory (CCLab), EPFL PREVIOUS POSITIONS 2006-2012 Research and Teaching Associate, Composite Construction Laboaratory (CCLab), EPFL 2002-2006 Assisstant Professor, Technological Educational Institute (TEI) of Patras, Greece 2001-2003 Post-doctoral Research associate, (Part-time) Dept. Mechanical Engineering and Aeronautics of the University of Patras, Greece. EDUCATION 1990 - 1995 Graduate student, Dept. Mechanical Engineering and Aeronautics, University of Patras, Greece October 1994-January 1995 Dept. Mechanical Engineering, University of Bristol, U.K. (In the frame of Erasmus project for the final year thesis, under the supervision of Prof. R. D. Adams) 1995 - 2000 Research assistant, Dept. Mechanical Engineering and Aeronautics, University of Patras. LANGUAGES English, Greek, French COMMUNITY ACTIVITIES (Member of) Council of the European Society of Composite Materials (ESCM) Council of the European Society of Experimental Mechanics (EuraSEM) The European Structural Integrity Society (ESIS) The European Energy Research Alliance (EERA, JP WIND) The Technical Chamber of Greece (TCG) The Hellenic Association of Mechanical & Electrical Engineers SCIENTIFIC-RESEARCH INTERESTS Experimental methods for the study of the behavior of composite materials under static and fatigue loading Development of analytical methods for the study of the behavior of FRP composite materials under variable amplitude complex stress states Development of fatigue life prediction methodologies for composite materials and structures Design of constructions with composite materials Aurelio MuttoniAurelio Muttoni est professeur ordinaire et directeur du Laboratoire de Construction en Béton de l’Ecole Polytechnique Fédérale de Lausanne (Suisse). Il a reçu son diplôme et son doctorat en génie civil de l’Ecole Polytechnique Fédérale de Zürich à Zürich, Suisse, en 1982 et 1989 respectivement.
Ses activités actuelles en matière d’enseignement se concentrent sur la conception des structures, la théorie et le dimensionnement des structures en béton ainsi que la conception des ponts. Son groupe de recherche est actif dans les domaines suivants : comportement et méthodes de dimensionnement des structures en béton, conception de structures innovantes, effort tranchant dans les structures en béton, poinçonnement des dalles, analyse non-linéaire des structures incluant leur fiabilité, adhérence entre l’acier et le béton, engrènement des granulats, fatigue et influence de la durée de chargement sur la résistance du béton, comportement mécanique et principes de dimensionnement pour le béton à ultra-hautes performances, béton textile et béton recyclé.
Aurelio Muttoni a reçu la distinction
Chester Paul Siess Award for Excellence in Structural Research
en 2010 et la médaille
Wason for Most Meritorious Paper
en 2014, toutes deux décernées par l’
American Concrete Institute
. Il est membre du Presidium de la
fib
(Fédération Internationale du Béton), de plusieurs commissions et groupes de travail de la
fib
et il a dirigé le
Project Team
pour la deuxième génération de la norme européenne EN 1992-1-1 (Eurocode pour les structures en béton).
Aurelio Muttoni est aussi co-fondateur et associé du bureau de conseil Muttoni & Fernández (www.mfic.ch). Ce bureau est actif dans la conception, l’analyse et le dimensionnement de structures porteuses pour les constructions d’architecture et de génie civil, ainsi que dans le conseil en matière d’ingénierie structurale. John BotsisJohn (Ioannis) Botsis obtained his diplôme in civil engineering at the University of Patras, Greece in 1979. He continued his education at Case Institute of Technology in Cleveland Ohio/USA, where he received his MS and Ph.D. in 1984. After two years at the research center for national defense in Athens he was nominated assistant professor at the University of Illinois in Chicago, associate in 1991 and full professor in 1995. In 1996, he was nominated professor of solids and structural mechanics at the EPFL. At EPFL he teaches mechanics of structures and mechanics of continuous media´ at the bachelors level and Fracture mechanics at the masters and doctoral levels. His research covers the mechanics of solids and structures, fracture mechanics and micromechanics of polymers, metals and their composites as well as biomechanics. He is also actively involved in full-filed optical methods for surface strain measurements as well as internal strain measurements using fiber Bragg grating sensors, aimed at characterizing micromechanics of fracture, residual strains and strain distribution in composite laminates for structural monitoring. Funding for his research comes from the Swiss National Science Foundation, State Secretariat for Education and Research and Swiss industry. He retired on February 28, 2020.
Philippe SpätigPhilippe Spätig is currently Adjunct Professor at EPFL in the School of Basic Sciences, in the Laboratory of Reactor Physics and Systems Behaviours. He obtained his diploma of Engineer Physicist at EPFL in 1991 and his PhD at EPFL in 1995 on the role of thermal activation in the plasticity of the intermetallic Ni3Al. From 1995 to 1997, he worked as postdoc in the Materials Group of the Center for Research in Plasma Physics at EPFL, studying the effects of high-energy proton irradiation on alloys and pure metals. He then moved to the University of California Santa Barbara and spent two years in the group of Professor G.R. Odette, working on fracture mechanics of ferritic structural steels. He joined again the Materials Group of the Center for Research in Plasma Physics at EPFL in 2000 and worked in this group until the end of 2012. His research was focused on irradiation hardening and embrittlement of steels, as well as on the development of oxide dispersion strengthened steels. He also worked and developed experimental and analytical small specimen test techniques to reliably extract mechanical properties from limited material volume. In 2013, he joined the Laboratory for Nuclear Materials at Paul Scherrer Institute, while being associated with the Laboratory for Reactor Physics and System Behaviours at EPFL. Since then he mainly works on environmentally-assisted fatigue and fracture on austenitic and pressure vessel steels, where the effects of light water reactor environment on mechanical properties are investigated.