In mathematics, an autonomous category is a where dual objects exist.
A left (resp. right) autonomous category is a where every object has a left (resp. right) dual. An autonomous category is a monoidal category where every object has both a left and a right dual. is a synonym for autonomous category.
In a , the existence of left duals is equivalent to the existence of right duals, categories of this kind are called (symmetric) .
In categorial grammars, categories which are both left and right rigid are often called pregroups, and are employed in Lambek calculus, a non-symmetric extension of linear logic.
The concepts of and autonomous category are directly related, specifically, every autonomous category is *-autonomous. A *-autonomous category may be described as a linearly distributive category with (left and right) negations; such categories have two monoidal products linked with a sort of distributive law. In the case where the two monoidal products coincide and the distributivities are taken from the associativity isomorphism of the single monoidal structure, one obtains autonomous categories.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .
In , a branch of mathematics, a rigid category is a where every object is rigid, that is, has a dual X* (the internal Hom [X, 1]) and a morphism 1 → X ⊗ X* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined (following Alexander Grothendieck) by Neantro Saavedra Rivano in his thesis on . There are at least two equivalent definitions of a rigidity.