Concept

Anabelian geometry

Anabelian geometry is a theory in number theory which describes the way in which the algebraic fundamental group G of a certain arithmetic variety X, or some related geometric object, can help to restore X. The first results for number fields and their absolute Galois groups were obtained by Jürgen Neukirch, Masatoshi Gündüz Ikeda, Kenkichi Iwasawa, and Kôji Uchida (Neukirch–Uchida theorem, 1969) prior to conjectures made about hyperbolic curves over number fields by Alexander Grothendieck. As introduced in Esquisse d'un Programme the latter were about how topological homomorphisms between two arithmetic fundamental groups of two hyperbolic curves over number fields correspond to maps between the curves. These Grothendieck conjectures were partially solved by Hiroaki Nakamura and Akio Tamagawa, while complete proofs were given by Shinichi Mochizuki. Anabelian geometry can be viewed as one of the three generalizations of class field theory. Unlike two other generalizations — abelian higher class field theory and representation theoretic Langlands program — anabelian geometry is non-abelian and highly non-linear. The "anabelian question" has been formulated as How much information about the isomorphism class of the variety X is contained in the knowledge of the étale fundamental group A concrete example is the case of curves, which may be affine as well as projective. Suppose given a hyperbolic curve C, i.e., the complement of n points in a projective algebraic curve of genus g, taken to be smooth and irreducible, defined over a field K that is finitely generated (over its prime field), such that Grothendieck conjectured that the algebraic fundamental group G of C, a profinite group, determines C itself (i.e., the isomorphism class of G determines that of C). This was proved by Mochizuki. An example is for the case of (the projective line) and , when the isomorphism class of C is determined by the cross-ratio in K of the four points removed (almost, there being an order to the four points in a cross-ratio, but not in the points removed).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.