Explore le bruit d'échappement dans la neuroscience computationnelle, couvrant l'intensité stochastique, les intervalles d'intercirculation, les fonctions de vraisemblance, la comparaison des modèles de bruit, et les codes de vitesse par rapport aux codes temporels.
Explore la modélisation détaillée des canaux ioniques et des morphologies neuronales dans les neurosciences silico, couvrant la classification des neurones, la cinétique des canaux ioniques et les observations expérimentales.
Explore simulant des modèles de réseau neuronal à grande échelle et optimisant l'efficacité de la mémoire dans les simulations neuronales à l'aide de NEURON et de CoreNEURON.
Couvre la morphologie, les transducteurs, les affixes et les outils de calcul pour analyser les structures de mots et générer des représentations canoniques.
Couvre les mises en garde et le résumé de Simulation Neuroscience, soulignant l'importance des données critiques et des trois approches fondamentales pour comprendre le cerveau.
Présente le programme de maîtrise en neuro-X, en mettant l'accent sur son approche interdisciplinaire et ses possibilités de carrière en neurotechnologie.