Résumé
In computer science, robustness is the ability of a computer system to cope with errors during execution and cope with erroneous input. Robustness can encompass many areas of computer science, such as robust programming, robust machine learning, and Robust Security Network. Formal techniques, such as fuzz testing, are essential to showing robustness since this type of testing involves invalid or unexpected inputs. Alternatively, fault injection can be used to test robustness. Various commercial products perform robustness testing of software analysis. In general, building robust systems that encompass every point of possible failure is difficult because of the vast quantity of possible inputs and input combinations. Since all inputs and input combinations would require too much time to test, developers cannot run through all cases exhaustively. Instead, the developer will try to generalize such cases. For example, imagine inputting some integer values. Some selected inputs might consist of a negative number, zero, and a positive number. When using these numbers to test software in this way, the developer generalizes the set of all reals into three numbers. This is a more efficient and manageable method, but more prone to failure. Generalizing test cases is an example of just one technique to deal with failure—specifically, failure due to invalid user input. Systems generally may also fail due to other reasons as well, such as disconnecting from a network. Regardless, complex systems should still handle any errors encountered gracefully. There are many examples of such successful systems. Some of the most robust systems are evolvable and can be easily adapted to new situations. Programs and software are tools focused on a very specific task, and thus aren't generalized and flexible. However, observations in systems such as the internet or biological systems demonstrate adaptation to their environments. One of the ways biological systems adapt to environments is through the use of redundancy. Many organs are redundant in humans.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.