Temporal resolution (TR) refers to the discrete resolution of a measurement with respect to time. Often there is a trade-off between the temporal resolution of a measurement and its spatial resolution, due to Heisenberg's uncertainty principle. In some contexts, such as particle physics, this trade-off can be attributed to the finite speed of light and the fact that it takes a certain period of time for the photons carrying information to reach the observer. In this time, the system might have undergone changes itself. Thus, the longer the light has to travel, the lower the temporal resolution. In another context, there is often a tradeoff between temporal resolution and computer storage. A transducer may be able to record data every millisecond, but available storage may not allow this, and in the case of 4D PET imaging the resolution may be limited to several minutes. In some applications, temporal resolution may instead be equated to the sampling period, or its inverse, the refresh rate, or update frequency in Hertz, of a TV, for example. The temporal resolution is distinct from temporal uncertainty. This would be analogous to conflating with optical resolution. One is discrete, the other, continuous. The temporal resolution is a resolution somewhat the 'time' dual to the 'space' resolution of an image. In a similar way, the sample rate is equivalent to the pixel pitch on a display screen, whereas the optical resolution of a display screen is equivalent to temporal uncertainty. Note that both this form of image space and time resolutions are orthogonal to measurement resolution, even though space and time are also orthogonal to each other. Both an image or an oscilloscope capture can have a signal-to-noise ratio, since both also have measurement resolution. An oscilloscope is the temporal equivalent of a microscope, and it is limited by temporal uncertainty the same way a microscope is limited by optical resolution. A digital sampling oscilloscope has also a limitation analogous to , which is the sample rate.