A content discovery platform is an implemented software recommendation platform which uses recommender system tools. It utilizes user metadata in order to discover and recommend appropriate content, whilst reducing ongoing maintenance and development costs. A content discovery platform delivers personalized content to websites, mobile devices and set-top boxes. A large range of content discovery platforms currently exist for various forms of content ranging from news articles and academic journal articles to television. As operators compete to be the gateway to home entertainment, personalized television is a key service differentiator. Academic content discovery has recently become another area of interest, with several companies being established to help academic researchers keep up to date with relevant academic content and serendipitously discover new content.
To provide and recommend content, a search algorithm is used within a content discovery platform to provide keyword-related search results. User personalization and recommendation are tools that are used in the determination of appropriate content. Recommendations are either based on a single article or show, a particular academic field or genre of TV, or a full . Bespoke analysis can also be undertaken to understand specific requirements relating to user behavior and activity.
A variety of algorithms can be used:
Collaborative filtering of different users' behavior, preferences, and ratings.
Automatic content analysis and extraction of common patterns.
Social recommendations based on personal choices from other people.
An emerging market for content discovery platforms is academic content. Approximately 6000 academic journal articles are published daily, making it increasingly difficult for researchers to balance time management with staying up to date with relevant research. Though traditional tools academic search tools such as Google Scholar or PubMed provide a readily accessible database of journal articles, content recommendation in these cases are performed in a 'linear' fashion, with users setting 'alarms' for new publications based on keywords, journals or particular authors.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
Introduit les systèmes de recommandation, le filtrage collaboratif, la recommandation basée sur le contenu, les paramètres de similitude et la factorisation matricielle.
Couvre le filtrage collaboratif et les méthodes basées sur le contenu pour les systèmes de recommandation, en abordant les problèmes de démarrage à froid et en faisant des prédictions.
Explore les systèmes de recommandation, le filtrage collaboratif, les recommandations basées sur le contenu, les mesures de similarité et les méthodes avancées telles que la factorisation matricielle.
vignette|Illustration d'un filtrage collaboratif où un système de recommandation doit prédire l'évaluation d'un objet par un utilisateur en se basant sur les évaluations existantes. Le filtrage collaboratif (de l’anglais : en) regroupe l'ensemble des méthodes qui visent à construire des systèmes de recommandation utilisant les opinions et évaluations d'un groupe pour aider l'individu. Il existe trois principaux axes de recherche dans ce domaine, dépendant chacun des données recueillies sur les utilisateurs du système : le filtrage collaboratif actif ; le filtrage collaboratif passif ; le filtrage basé sur le contenu.