In electrochemistry, the Randles–Ševčík equation describes the effect of scan rate on the peak current i_p for a cyclic voltammetry experiment. For simple redox events such as the ferrocene/ferrocenium couple, i_p depends not only on the concentration and diffusional properties of the electroactive species but also on scan rate. Or if the solution is at 25 °C: i_p = current maximum in amps n = number of electrons transferred in the redox event (usually 1) A = electrode area in cm2 F = Faraday constant in C mol−1 D = diffusion coefficient in cm2/s C = concentration in mol/cm3 ν = scan rate in V/s R = Gas constant in J K−1 mol−1 T = temperature in K The constant with a value of 2.69x105 has units of C mol−1 V−1/2 For novices in electrochemistry, the predictions of this equation appear counter-intuitive, i.e. that i_p increases at faster voltage scan rates. It is important to remember that current, i, is charge (or electrons passed) per unit time. In cyclic voltammetry, the current passing through the electrode is limited by the diffusion of species to the electrode surface. This diffusion flux is influenced by the concentration gradient near the electrode. The concentration gradient, in turn, is affected by the concentration of species at the electrode, and how fast the species can diffuse through solution. By changing the cell voltage, the concentration of the species at the electrode surface is also changed, as set by the Nernst equation. Therefore, a faster voltage sweep causes a larger concentration gradient near the electrode, resulting in a higher current. Using the relationships defined by this equation, the diffusion coefficient of the electroactive species can be determined. Linear plots of ip vs. ν1/2 provide evidence for a chemically reversible redox process vs the cases where redox causes major structural change in the analyte. For species where the diffusion coefficient is known (or can be estimated), the slope of the plot of ip vs. ν1/2 provides information into the stoichiometry of the redox process.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.