Concept

Structural acoustics

Résumé
Structural acoustics is the study of the mechanical waves in structures and how they interact with and radiate into adjacent media. The field of structural acoustics is often referred to as vibroacoustics in Europe and Asia. People that work in the field of structural acoustics are known as structural acousticians. The field of structural acoustics can be closely related to a number of other fields of acoustics including noise, transduction, underwater acoustics, and physical acoustics. Compressional waves (often referred to as longitudinal waves) expand and contract in the same direction (or opposite) as the wave motion. The wave equation dictates the motion of the wave in the x direction. where is the displacement and is the longitudinal wave speed. This has the same form as the acoustic wave equation in one-dimension. is determined by properties (bulk modulus and density ) of the structure according to When two dimensions of the structure are small with respect to wavelength (commonly called a beam), the wave speed is dictated by Youngs modulus instead of the and are consequently slower than in infinite media. Shear waves occur due to the shear stiffness and follows a similar equation, but with the displacement occurring in the transverse direction, perpendicular to the wave motion. The shear wave speed is governed by the shear modulus which is less than and , making shear waves slower than longitudinal waves. Most sound radiation is caused by bending (or flexural) waves, that deform the structure transversely as they propagate. Bending waves are more complicated than compressional or shear waves and depend on material properties as well as geometric properties. They are also dispersive since different frequencies travel at different speeds. Finite element analysis can be used to predict the vibration of complex structures. A finite element computer program will assemble the mass, stiffness, and damping matrices based on the element geometries and material properties, and solve for the vibration response based on the loads applied.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.