250px|thumb|Trachyte.
Un trachyte est une roche volcanique explosive riche en feldspaths alcalins et à teneur en silice assez élevée. Les trachytes appartiennent de ce fait au groupe des roches felsiques. Leur structure est principalement microlithique mais la présence de phénocristaux est habituelle. La structure est également fluidale car les microcristaux présentent des champs d'orientation commune selon des lignes fluides. À la cassure, l'aspect est rugueux comme l'indique l'étymologie du nom trachyte, du grec ancien / trachys, « rugueux ». La couleur est assez claire : les trachytes sont des roches leucocrates, généralement blanchâtres à gris verdâtre.
Sur le plan minéralogique, les feldspaths alcalins sont le plus souvent représentés dans les trachytes par de la sanidine mais il peut s'agir aussi d'albite ou d'anorthose. La silice peut parfois s'exprimer sous forme de quartz mais à un taux toujours inférieur à 10 %. Des cristaux de feldspaths plagioclases, de la biotite, des amphiboles sont occasionnellement présents. La roche magmatique plutonique équivalente est la syénite.
Sur le plan de la composition chimique, comme l'indique leur position dans le diagramme de la classification TAS, les trachytes présentent une teneur pondérale en silice au moins supérieure à 58 % mais toujours inférieure à 69 %. La teneur en minéraux alcalins est supérieure à 7 %. Cette composition correspond à la cristallisation fractionnée de basaltes alcalins issus de magmas n'ayant pas migré directement depuis leur zone de formation (plus de 30 km de profondeur) vers la surface mais qui ont chimiquement évolué par contamination crustale (influence de la croûte traversée sur le chimisme du magma) en restant stockés dans des chambres magmatiques, vers 10 km de profondeur, où ils ont été enrichis en silice lors de leur refroidissement et par fusion de la croûte terrestre environnante.
Les trachytes sont des laves très visqueuses formant surtout des dômes et des , et sont généralement associés à un volcanisme de type explosif.
Domite
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Coulée de lave pāhoehoe à Hawaï. La lave est une roche, en fusion ou, par extension, juste solidifiée, émise par un volcan lors d’une éruption. C'est un magma arrivé en surface et partiellement dégazé. Les laves, au moment où elles sont émises, atteignent des températures qui, selon leur composition chimique, varient de . Elles se solidifient rapidement par refroidissement au contact du sol, de l’atmosphère ou de l’eau et forment alors des roches volcaniques, comme les basaltes ou les rhyolites.
Les roches magmatiques ou roches ignées (anciennement, roches éruptives), se forment quand un magma se refroidit et se solidifie, avec ou sans cristallisation complète des minéraux le composant. Cette solidification peut se produire : lentement en profondeur, cas des roches magmatiques plutoniques (dites « intrusives ») ; rapidement à la surface, cas des roches magmatiques volcaniques (dites « extrusives » ou « effusives »).
vignette| alt=Une roche volcanique.|Un exemple de roche volcanique : picro-basalte du piton de la Fournaise (La Réunion, France). Les roches volcaniques sont des roches magmatiques, résultant du refroidissement rapide d'une lave (un magma arrivé à la surface), d'où leurs autres noms de volcanites, roches extrusives, roches effusives ou roches éruptives. Les noms des roches volcaniques sont d'origines variées. Outre ceux d'origine locale ou historique, les différents types de descriptions morphologiques, par ex.
Mineralogy, chemistry and spatial distribution of phyllomanganates, found in abundance at the bottom of thick Ni-laterite deposits, were established on dislocated vein-infillings showing banded and fibrous patterns (i.e. colloforms with rows of tiny boxwor ...
2019
,
One of the most serious causes of degradation of concrete is the alkalisilica reaction. Amorphous silicates present in certain aggregates react with the alkaline pore solution of the concrete to form a gel, which absorbs water and swells, leading to the ex ...
Wiley-Blackwell2013
, , ,
A key parameter in the study of magma evolution is the time scale on which magmatic processes occur. Using nanoscale secondary ion mass spectrometry (NanoSIMS), SIMS, and cathodoluminescence (CL) analyses, we have measured titanium (Ti) diffusion profiles ...