In decision theory and game theory, Wald's maximin model is a non-probabilistic decision-making model according to which decisions are ranked on the basis of their worst-case outcomes – the optimal decision is one with the least bad worst outcome. It is one of the most important models in robust decision making in general and robust optimization in particular.
It is also known by a variety of other titles, such as Wald's maximin rule, Wald's maximin principle, Wald's maximin paradigm, and Wald's maximin criterion. Often 'minimax' is used instead of 'maximin'.
This model represents a 2-person game in which the player plays first. In response, the second player selects the worst state in , namely a state in that minimizes the payoff over in . In many applications the second player represents uncertainty. However, there are maximin models that are completely deterministic.
The above model is the classic format of Wald's maximin model. There is an equivalent mathematical programming (MP) format:
where denotes the real line.
As in game theory, the worst payoff associated with decision , namely
is called the security level of decision .
The minimax version of the model is obtained by exchanging the positions of the and operations in the classic format:
The equivalent MP format is as follows:
Inspired by game theory, Abraham Wald developed this model as an approach to scenarios in which there is only one player (the decision maker). Player 2 showcases a gloomy approach to uncertainty. In Wald's maximin model, player 1 (the player) plays first and player 2 (the player) knows player 1's decision when he selects his decision. This is a major simplification of the classic 2-person zero-sum game in which the two players choose their strategies without knowing the other player's choice. The game of Wald's maximin model is also a 2-person zero-sum game, but the players choose sequentially.
With the establishment of modern decision theory in the 1950s, the model became a key ingredient in the formulation of non-probabilistic decision-making models in the face of severe uncertainty.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
Info-gap decision theory seeks to optimize robustness to failure under severe uncertainty, in particular applying sensitivity analysis of the stability radius type to perturbations in the value of a given estimate of the parameter of interest. It has some connections with Wald's maximin model; some authors distinguish them, others consider them instances of the same principle. It has been developed by Yakov Ben-Haim, and has found many applications and described as a theory for decision-making under "severe uncertainty".
L'algorithme minimax (aussi appelé algorithme MinMax) est un algorithme qui s'applique à la théorie des jeux pour les jeux à deux joueurs à somme nulle (et à information complète) consistant à minimiser la perte maximum (c'est-à-dire dans le pire des cas). Pour une vaste famille de jeux, le théorème du minimax de von Neumann assure l'existence d'un tel algorithme, même si dans la pratique il n'est souvent guère aisé de le trouver.
Minimax-fair machine learning minimizes the error for the worst-off group. However, empirical evidence suggests that when sophisticated models are trained with standard empirical risk minimization (ERM), they often have the same performance on the worst-of ...
It is natural for humans to judge the outcome of a decision under uncertainty as a percentage of an ex-post optimal performance. We propose a robust decision-making framework based on a relative performance index. It is shown that if the decision maker's p ...
We introduce a generic two-loop scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated dual problem and takes full advantage of existing ...