Concept

Conjecture de Sumner

En théorie des graphes, la conjecture de Sumner (également appelée conjecture universelle du tournoi de Sumner), nommée ainsi d'après David Sumner, affirme que les tournois sont des graphes universels pour les polyarbres. Plus précisément tout tournoi avec sommets contient tout polyarbre avec sommets comme sous-graphe. Cette conjecture, même si elle est encore ouverte dans le cas général, a été démontré pour toutes les valeurs suffisamment grandes de par Daniela Kühn, Richard Mycroft et Deryk Osthus. La formulation de cette conjecture en 1971 est attribuée à David Sumner, un théoricien des graphes à l'université de Caroline du Sud. La conjecture a été prouvée pour les valeurs assez grandes de par Daniela Kühn, Richard Mycroft et Deryk Osthus,. La conjecture de Sumner, si elle est prouvée, donne la plus petite taille possible d'un graphe universel, à savoir 2n-2, pour les polyarbres de taille n. Pour le voir, considérons le graphe étoile à sommets, dans lequel tous les arcs sont orientés depuis le sommet central vers les feuilles. Alors, ne peut pas être plongé comme sous-graphe dans le tournoi formé à partir des sommets d'un polygone à sommets dont les arêtes sont orientées dans le sens des aiguilles d'une montre autour du polygone. En effet, dans un tel tournoi, tout sommet a un degré entrant et un degré sortant égal à , tandis que le sommet central de a un degré supérieur à . Cependant, dans un tournoi à sommets, le degré sortant moyen est , et le degré sortant maximal est un nombre entier supérieur ou égal à la moyenne. Il existe donc un sommet de degré sortant , qui peut être utilisé comme sommet central pour une copie de . Les résultats suivants sur la conjecture ont été prouvés. Il existe une fonction avec taux de croissance asymptotique avec la propriété que tout polyarbre à sommets peut être plongé comme sous-graphe dans tout tournoi à sommets. De plus, on a la majoration . Il existe une fonction telle que les tournois sur les sommets sont universels pour les polyarbres à feuilles.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.