Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Let ES(n) denote the minimum natural number such that every set of ES(n) points in general position in the plane contains n points in convex position. In 1935, ErdAs and Szekeres proved that ES. In 1961, they obtained the lower bound , which they conjectur ...
We establish an explicit upper bound for the Euclidean minimum of a number field which depends, in a precise manner, only on its discriminant and the number of real and complex embeddings. Such bounds were shown to exist by Davenport and Swinnerton-Dyer ([ ...
Let P be a partially ordered set. If the Boolean lattice (2[n],⊂) can be partitioned into copies of P for some positive integer n, then P must satisfy the following two trivial conditions: (1) the size of P is a power of 2, (2) P has a unique maximal and m ...
In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer n≥3, we define e(n) to be the minimum positive integer such that an ...
We prove the Topological Mirror Symmetry Conjecture by Hausel-Thaddeus for smooth moduli spaces of Higgs bundles of type SLn and PGLn. More precisely, we establish an equality of stringy Hodge numbers for certain pairs of algebraic orbifolds generica ...
In this paper we show that every set A ⊂ ℕ with positive density contains B + C for some pair B, C of infinite subsets of ℕ , settling a conjecture of Erdős. The proof features two different decompositions of an arbitrary bounded sequence into a structured ...
Let P be a set of n > d points in for d >= 2. It was conjectured by Zvi Schur that the maximum number of (d-1)-dimensional regular simplices of edge length diam(P), whose every vertex belongs to P, is n. We prove this statement under the condition that any ...
We prove that the number of rational points of bounded height on certain del Pezzo surfaces of degree 1 defined over Q grows linearly, as predicted by Manin's conjecture. ...
Given a sequence of positive integers , let denote the family of all sequences of positive integers such that for all . Two families of sequences (or vectors), , are said to be -cross-intersecting if no matter how we select and , there are at least distinc ...
Determining the size of a maximum independent set of a graph G, denoted by alpha(G), is an NP-hard problem. Therefore many attempts are made to find upper and lower bounds, or exact values of alpha(G) for special classes of graphs. This paper is aimed towa ...