Concept

Corps quasi-algébriquement clos

Résumé
En mathématiques, un corps K est dit quasi-algébriquement clos si tout polynôme homogène P sur K non constant possède un zéro non trivial dès que le nombre de ses variables est strictement supérieur à son degré, autrement dit : si pour tout polynôme P à coefficients dans K, homogène, non constant, en les variables X1, ..., XN et de degré d < N, il existe un zéro non trivial de P sur K, c'est-à-dire des éléments x1, ..., xN de K non tous nuls tels que P(x1, ..., xN) = 0. En termes géométriques, l'hypersurface définie par P, dans l'espace projectif de dimension N – 1, possède alors un point sur K. Cette notion a été d'abord étudiée par Chiungtze Tsen, un étudiant d'Emmy Noether, dans un article de 1936, puis par Serge Lang en 1951 dans sa thèse. L'idée elle-même est attribuée à Emil Artin. Tout corps algébriquement clos est quasi-algébriquement clos. En fait, sur un tel corps, tout polynôme homogène en au moins deux variables possède un zéro non trivial. Tout corps fini est quasi-algébriquement clos, d'après le théorème de Chevalley-Warning. Tout corps muni d'une valuation discrète pour laquelle il est complet et de corps résiduel algébriquement clos est quasi-algébriquement clos, d'après un résultat de Lang. Toute extension algébrique d'un corps quasi-algébriquement clos est quasi-algébriquement close. Le groupe de Brauer d'un corps quasi-algébriquement clos est trivial. Chiungtze C. Tsen a démontré en 1933 que tout corps de fonctions d'une courbe algébrique sur un corps algébriquement clos est quasi-algébriquement clos. Ceci implique que son groupe de Brauer, et plus généralement que tous les groupes de cohomologie de Galois H i(K, K*) pour i ≥ 1, sont triviaux. Ce résultat est utilisé pour calculer les groupes de cohomologie étale d'une courbe algébrique. Les corps quasi-algébriquement clos sont aussi appelés corps C1. Plus généralement, pour tout entier k ≥ 1, un corps K est dit Ck si tout polynôme homogène à coefficients dans K, non constant, de degré d, en N variables, possède un zéro non trivial sur K dès que dk < N.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.