La superradiance est une émission de rayons lumineux faite de manière cohérente par des atomes excités. La radiance absolue de cette émission est alors très supérieure au minimum moyen donné par la loi de Planck définie pour un corps noir de température T comme : C'est Yakov Zel’dovitch qui décrivit le premier ce phénomène et Robert Dicke qui la formula mathématiquement en 1954. Ensuite c'est Igor Novikov alors à l’Université de Moscou qui médiatisa cette théorie. Cette radiance est conservée pour un rayon sortant du corps noir dans un milieu transparent, définissant la température de Planck d'un rayon à partir de sa radiance absolue et de sa fréquence. Un milieu possédant deux niveaux dont l'énergie diffère de , amplifie un rayon lumineux de fréquence si la température de Boltzmann du milieu à cette fréquence est négative ou supérieure à . Dans ce cas, le coefficient d'Einstein est positif . Cette amplification est proportionnelle à , à la radiance absolue initiale et au chemin infinitésimal d parcouru dans le milieu. Si la radiance finale est voisine de la radiance minimale calculée par la loi de Planck, elle est dite d'émission spontanée. À l'opposé, si la radiance finale est très supérieure à , il y a superradiance. En conséquence, localement, un rayon ayant initialement une radiance élevée absorbe beaucoup plus d'énergie qu'un rayon faible. L'absorption d'énergie abaissant généralement la température de Boltzmann, l'amplification des rayons faibles devient négligeable : c'est la compétition des modes optiques. Dans un laser, un résonateur produit une superradiance intense, seuls subsistent des modes optiques appartenant à un système de modes orthogonaux entre eux. En astrophysique, l'existence de nuages d'hydrogène à basse pression et partiellement ionisés au voisinage d'astres très chauds conduit à une température de Boltzmann très élevée des atomes, en particulier à la fréquence Lyman alpha. Il apparait donc des superradiances intenses.