Concept

Grand icosaèdre

Résumé
En géométrie, le grand icosaèdre est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de vingt faces triangulaires équilatérales, cinq triangles se rencontrant à chaque sommet dans une suite pentagrammique. Les douze sommets coïncident avec les localisations des sommets d'un icosaèdre (régulier convexe). Les 30 arêtes sont partagées avec le petit dodécaèdre étoilé. C'est aussi une stellation d'un icosaèdre (régulier convexe), compté par Wenninger comme le modèle [W41] et la et la des 59 stellations par Coxeter. Polyhedron Models, 1974 H. S. M.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.