In radiation thermodynamics, a hohlraum (a non-specific German word for a "hollow space" or "cavity") is a cavity whose walls are in radiative equilibrium with the radiant energy within the cavity. This idealized cavity can be approximated in practice by making a small perforation in the wall of a hollow container of any opaque material. The radiation escaping through such a perforation will be a good approximation to black-body radiation at the temperature of the interior of the container.
The indirect drive approach to inertial confinement fusion is as follows: the fusion fuel capsule is held inside a cylindrical hohlraum. The hohlraum body is manufactured using a high-Z (high atomic number) element, usually gold or uranium.
Inside the hohlraum is a fuel capsule containing deuterium and tritium (D-T) fuel. A frozen layer of D-T ice adheres inside the fuel capsule.
The fuel capsule wall is synthesized using light elements such as plastic, beryllium, or high density carbon, i.e. diamond. The outer portion of the fuel capsule explodes outward when ablated by the x-rays produced by the hohlraum wall upon irradiation by lasers. Due to Newton's third law, the inner portion of the fuel capsule implodes, causing the D-T fuel to be supercompressed, activating a fusion reaction.
The radiation source (e.g., laser) is pointed at the interior of the hohlraum rather than at the fuel capsule itself. The hohlraum absorbs and re-radiates the energy as X-rays, a process known as indirect drive. The advantage to this approach, compared to direct drive, is that high mode structures from the laser spot are smoothed out when the energy is re-radiated from the hohlraum walls. The disadvantage to this approach is that low mode asymmetries are harder to control. It is important to be able to control both high mode and low mode asymmetries to achieve a uniform implosion.
The hohlraum walls must have surface roughness less than 1 micron, and hence accurate machining is required during fabrication.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Nova was a high-power laser built at the Lawrence Livermore National Laboratory (LLNL) in California, United States, in 1984 which conducted advanced inertial confinement fusion (ICF) experiments until its dismantling in 1999. Nova was the first ICF experiment built with the intention of reaching "ignition", a chain reaction of nuclear fusion that releases a large amount of energy. Although Nova failed in this goal, the data it generated clearly defined the problem as being mostly a result of Rayleigh–Taylor instability, leading to the design of the National Ignition Facility, Nova's successor.
Le National Ignition Facility, ou NIF, est un laser de recherche extrêmement énergétique, construit au sein du laboratoire national Lawrence Livermore, à Livermore (Californie, États-Unis). Le NIF a des usages multiples. Ses deux fonctions principales sont le test des armes nucléaires des États-Unis et les expériences liées à l'énergie de fusion. Le National Ignition Facility utilise la technique du confinement inertiel pour permettre aux scientifiques d'étudier la fusion nucléaire et les autres domaines d'utilisation des plasmas extrêmement denses.
La fusion par confinement inertiel est une méthode utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées en vue d'atteindre la fusion nucléaire. Le confinement du combustible de fusion est réalisé à l'aide de forces inertielles. Cette méthode peut être mise en œuvre grâce à des techniques diverses, dont : striction axiale ; confinement inertiel par laser. D'autres méthodes permettent de réaliser le confinement du combustible nécessaire à la fusion, notamment le confinement magnétique, le confinement électrostatique et la fusion catalysée par muons.
The heat flux mitigation during the thermal quench (TQ) by the shattered pellet injection (SPI) is one of the major elements of disruption mitigation strategy for ITER. It's efficiency greatly depends on the SPI and the target plasma parameters, and is ult ...
Iop Publishing Ltd2024
Reduction in stimulated Brillouin scattering (SBS) from National Ignition Facility Hohlraums has been predicted through the use of multi-ion species materials on Hohlraum walls. This approach to controlling SBS is based upon introducing a lighter ion speci ...
AIP Publishing2023
, , , , ,
The required heating power, P-LH, to access the high confinement regime (H-mode) in tritium containing plasmas is investigated in JET with ITER-like wall at a toroidal magnetic field of B-t = 1.8 T and a plasma current of I-p = 1.7 MA. PLH, also referred t ...