Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
Geometric properties of lattice quantum gravity in two dimensions are studied numerically via Monte Carlo on Euclidean Dynamical Triangulations. A new computational method is proposed to simulate gravity coupled with fermions, which allows the study of int ...
Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...
A hash proof system (HPS) is a form of implicit proof of membership to a language. Out of the very few existing post-quantum HPS, most are based on languages of ciphertexts of code-based or lattice-based cryptosystems and inherently suffer from a gap cause ...
We propose a 2-round blind signature protocol based on the random oracle heuristic and the hardness of standard lattice problems (Ring/Module-SIS/LWE and NTRU) with a signature size of 22 KB. The protocol is round-optimal and has a transcript size that can ...
We give a construction of an efficient one-out-of-many proof system, in which a prover shows that he knows the pre-image for one element in a set, based on the hardness of lattice problems. The construction employs the recent zero-knowledge framework of Ly ...
Bootstrapping parameters for the approximate homomorphic-encryption scheme of Cheon et al., CKKS (Asiacrypt 17), are usually instantiated using sparse secrets to be efficient. However, using sparse secrets constrains the range of practical parameters withi ...
We prove that Kilian's four-message succinct argument system is post-quantum secure in the standard model when instantiated with any probabilistically checkable proof and any collapsing hash function (which in turn exist based on the post-quantum hardness ...
A geometric method of lattice reduction based on cycles of directional and hyperplanar shears is presented. The deviation from cubicity at each step of the reduction is evaluated by a parameter called 'basis rhombicity' which is the sum of the absolute val ...