Water quality modeling involves water quality based data using mathematical simulation techniques. Water quality modeling helps people understand the eminence of water quality issues and models provide evidence for policy makers to make decisions in order to properly mitigate water. Water quality modeling also helps determine correlations to constituent sources and water quality along with identifying information gaps. Due to the increase in freshwater usage among people, water quality modeling is especially relevant both in a local level and global level. In order to understand and predict the changes over time in water scarcity, climate change, and the economic factor of water resources, water quality models would need sufficient data by including water bodies from both local and global levels. A typical water quality model consists of a collection of formulations representing physical mechanisms that determine position and momentum of pollutants in a water body. Models are available for individual components of the hydrological system such as surface runoff; there also exist basin wide models addressing hydrologic transport and for ocean and estuarine applications. Often finite difference methods are used to analyze these phenomena, and, almost always, large complex computer models are required. Water quality models have different information, but generally have the same purpose, which is to provide evidentiary support of water issues. Models can be either deterministic or statistical depending on the scale with the base model, which is dependent on if the area is on a local, regional, or a global scale. Another aspect to consider for a model is what needs to be understood or predicted about that research area along with setting up any parameters to define the research. Another aspect of building a water quality model is knowing the audience and the exact purpose for presenting data like to enhance water quality management for water quality law makers for the best possible outcomes.