Photoelectrochemistry is a subfield of study within physical chemistry concerned with the interaction of light with electrochemical systems. It is an active domain of investigation. One of the pioneers of this field of electrochemistry was the German electrochemist Heinz Gerischer. The interest in this domain is high in the context of development of renewable energy conversion and storage technology. Photoelectrochemistry has been intensively studied in the 1970-80s because of the first peak oil crisis. Because fossil fuels are non-renewable, it is necessary to develop processes to obtain renewable resources and use clean energy. Artificial photosynthesis, photoelectrochemical water splitting and regenerative solar cells are of special interest in this context. The photovoltaic effect was discovered by Alexandre Edmond Becquerel. Heinz Gerischer, H. Tributsch, AJ. Nozik, AJ. Bard, A. Fujishima, K. Honda, PE. Laibinis, K. Rajeshwar, TJ Meyer, PV. Kamat, N.S. Lewis, R. Memming, John Bockris are researchers which have contributed a lot to the field of photoelectrochemistry. Semiconductor materials have energy band gaps, and will generate a pair of electron and hole for each absorbed photon if the energy of the photon is higher than the band gap energy of the semiconductor. This property of semiconductor materials has been successfully used to convert solar energy into electrical energy by photovoltaic devices. In photocatalysis the electron-hole pair is immediately used to drive a redox reaction. However, the electron-hole pairs suffer from fast recombination. In photoelectrocatalysis, a differential potential is applied to diminish the number of recombinations between the electrons and the holes. This allows an increase in the yield of light's conversion into chemical energy. When a semiconductor comes into contact with a liquid (redox species), to maintain electrostatic equilibrium, there will be a charge transfer between the semiconductor and liquid phase if formal redox potential of redox species lies inside semiconductor band gap.