Concept

List of complex and algebraic surfaces

Concepts associés (7)
Surface of general type
In algebraic geometry, a surface of general type is an algebraic surface with Kodaira dimension 2. Because of Chow's theorem any compact complex manifold of dimension 2 and with Kodaira dimension 2 will actually be an algebraic surface, and in some sense most surfaces are in this class. Gieseker showed that there is a coarse moduli scheme for surfaces of general type; this means that for any fixed values of the Chern numbers there is a quasi-projective scheme classifying the surfaces of general type with those Chern numbers.
Surface rationnelle
En géométrie algébrique, une branche des mathématiques, une surface rationnelle est une surface birationnellement équivalente à un plan projectif, ou en d'autres termes, une variété rationnelle de dimension deux. Chaque surface rationnelle non-singulière peut être obtenue après plusieurs éclatements d'une surface rationnelle minimale. Les surfaces rationnelles minimales sont des surfaces de Hirzebruch Σr pour r = 0 ou r ≥ 2. Diamant de Hodge où n est égal à 0 pour le plan projectif, 1 pour les surfaces de Hirzebruch et supérieur à 1 pour les autres surfaces rationnelles.
Nodal surface
In algebraic geometry, a nodal surface is a surface in (usually complex) projective space whose only singularities are nodes. A major problem about them is to find the maximum number of nodes of a nodal surface of given degree. The following table gives some known upper and lower bounds for the maximal number of nodes on a complex surface of given degree. In degree 7, 9, 11, and 13, the upper bound is given by , which is better than the one by .
Endrass surface
In algebraic geometry, an Endrass surface is a nodal surface of degree 8 with 168 real nodes, found by . , it remained the record-holder for the most number of real nodes for its degree; however, the best proven upper bound, 174, does not match the lower bound given by this surface.
Kodaira dimension
In algebraic geometry, the Kodaira dimension κ(X) measures the size of the canonical model of a projective variety X. Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation κ. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The canonical bundle of a smooth algebraic variety X of dimension n over a field is the line bundle of n-forms, which is the nth exterior power of the cotangent bundle of X.
Algebraic surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two).
K3 (géométrie)
En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.