In mathematical logic, computational complexity theory, and computer science, the existential theory of the reals is the set of all true sentences of the form
where the variables are interpreted as having real number values, and where is a quantifier-free formula involving equalities and inequalities of real polynomials. A sentence of this form is true if it is possible to find values for all of the variables that, when substituted into formula , make it become true.
The decision problem for the existential theory of the reals is the problem of finding an algorithm that decides, for each such sentence, whether it is true or false. Equivalently, it is the problem of testing whether a given semialgebraic set is non-empty. This decision problem is NP-hard and lies in PSPACE, giving it significantly lower complexity than Alfred Tarski's quantifier elimination procedure for deciding statements in the first-order theory of the reals without the restriction to existential quantifiers. However, in practice, general methods for the first-order theory remain the preferred choice for solving these problems.
The complexity class has been defined to describe the class of computational problems that may be translated into equivalent sentences of this form. In structural complexity theory, it lies between NP and PSPACE. Many natural problems in geometric graph theory, especially problems of recognizing geometric intersection graphs and straightening the edges of graph drawings with crossings, belong to , and are complete for this class. Here, completeness means that there exists a translation in the reverse direction, from an arbitrary sentence over the reals into an equivalent instance of the given problem.
In mathematical logic, a theory is a formal language consisting of a set of sentences written using a fixed set of symbols.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs" (Pach 2013).
In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by , , and . One way of proving Fáry's theorem is to use mathematical induction.
En théorie des graphes, le tracé de graphes consiste à représenter des graphes dans le plan. Le tracé de graphes est utile à des applications telles que la conception de circuits VLSI, l'analyse de réseaux sociaux, la cartographie, et la bio-informatique. Les graphes sont généralement représentés en utilisant des points, disques ou boites pour représenter les sommets, et des courbes ou des segments pour représenter les arêtes. Pour les graphes orientés, on utilise habituellement ses flèches en bout d'arête pour représenter l'orientation.
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
The main goal of this paper is to formalize and explore a connection between chromatic properties of graphs defined by geometric representations and competitivity analysis of on-line algorithms. This connection became apparent after the recent construction ...