Concept

Dualité d'Alexander

In mathematics, Alexander duality refers to a duality theory initiated by a result of J. W. Alexander in 1915, and subsequently further developed, particularly by Pavel Alexandrov and Lev Pontryagin. It applies to the homology theory properties of the complement of a subspace X in Euclidean space, a sphere, or other manifold. It is generalized by Spanier–Whitehead duality. Let be a compact, locally contractible subspace of the sphere of dimension n. Let be the complement of in . Then if stands for reduced homology or reduced cohomology, with coefficients in a given abelian group, there is an isomorphism for all . Note that we can drop local contractibility as part of the hypothesis if we use Čech cohomology, which is designed to deal with local pathologies. This is useful for computing the cohomology of knot and link complements in . Recall that a knot is an embedding and a link is a disjoint union of knots, such as the Borromean rings. Then, if we write the link/knot as , we have giving a method for computing the cohomology groups. Then, it is possible to differentiate between different links using the Massey products. For example, for the Borromean rings , the homology groups are For smooth manifolds, Alexander duality is a formal consequence of Verdier duality for sheaves of abelian groups. More precisely, if we let denote a smooth manifold and we let be a closed subspace (such as a subspace representing a cycle, or a submanifold) represented by the inclusion , and if is a field, then if is a sheaf of -vector spaces we have the following isomorphism where the cohomology group on the left is compactly supported cohomology. We can unpack this statement further to get a better understanding of what it means. First, if is the constant sheaf and is a smooth submanifold, then we get where the cohomology group on the right is local cohomology with support in . Through further reductions, it is possible to identify the homology of with the cohomology of .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.