Résumé
In computer operating systems, memory paging (or swapping on some Unix-like systems) is a memory management scheme by which a computer stores and retrieves data from secondary storage for use in main memory. In this scheme, the operating system retrieves data from secondary storage in same-size blocks called pages. Paging is an important part of virtual memory implementations in modern operating systems, using secondary storage to let programs exceed the size of available physical memory. For simplicity, main memory is called "RAM" (an acronym of random-access memory) and secondary storage is called "disk" (a shorthand for hard disk drive, drum memory or solid-state drive, etc.), but as with many aspects of computing, the concepts are independent of the technology used. Depending on the memory model, paged memory functionality is usually hardwired into a CPU/MCU by using a Memory Management Unit (MMU) or Memory Protection Unit (MPU) and separately enabled by privileged system code in the operating system's kernel. In CPUs implementing the x86 instruction set architecture (ISA) for instance, the memory paging is enabled via the CR0 control register. In the 1960s, swapping was an early virtual memory technique. An entire program or entire segment would be "swapped out" (or "rolled out") from RAM to disk or drum, and another one would be swapped in (or rolled in). A swapped-out program would be current but its execution would be suspended while its RAM was in use by another program; a program with a swapped-out segment could continue running until it needed that segment, at which point it would be suspended until the segment was swapped in. A program might include multiple overlays that occupy the same memory at different times. Overlays are not a method of paging RAM to disk but merely of minimizing the program's RAM use. Subsequent architectures used memory segmentation, and individual program segments became the units exchanged between disk and RAM. A segment was the program's entire code segment or data segment, or sometimes other large data structures.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (217)
Fondements de la spectroscopie
Couvre les fondamentaux de la spectroscopie, y compris les outils, la couleur, l'effet Doppler et le comportement moléculaire.
Chimie quantique: Corrections en matière d'énergie
Couvre l'approximation systématique des corrections d'énergie dans la chimie quantique.
Fondements de la spectroscopie
Couvre les fondamentaux de la spectroscopie, y compris les règles de sélection et les transitions.
Afficher plus
Publications associées (279)