Résumé
An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mistakenly called electron receptors. The electron accepting power of an acceptor molecule is measured by its electron affinity (A) which is the energy released when filling the lowest unoccupied molecular orbital (LUMO). The energy required to remove one electron from the electron donor is its ionization potential (I). The overall system energy change (ΔE), i.e. the energy gained or lost, for the charge transfer is While oxidizing agents undergo permanent chemical alteration through covalent or ionic reaction chemistry, resulting in the irreversible transfer of one or more electrons, in many systems, the transfer of electronic charge from an electron donor may only appear fractional due to resonance and equilibrium between the initial configuration before transfer and the resulting configuration. This leads to the formation of charge transfer complexes in which the components largely retain their chemical identities. A class of electron acceptors that acquire not just one, but a set of two paired electrons that form a covalent bond with an electron donor molecule, is known as a Lewis acid. This phenomenon gives rise to the wide field of Lewis acid-base chemistry. The driving forces for electron donor and acceptor behavior in chemistry is based on the concepts of electropositivity (for donors) and electronegativity (for acceptors) of atomic or molecular entities. Examples of electron acceptors include oxygen, nitrate, iron (III), manganese (IV), sulfate, carbon dioxide, or in some microorganisms the chlorinated solvents such as tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethene (DCE), and vinyl chloride (VC). These reactions are of interest not only because they allow organisms to obtain energy, but also because they are involved in the natural biodegradation of organic contaminants.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.