Résumé
Photoexcitation is the production of an excited state of a quantum system by photon absorption. The excited state originates from the interaction between a photon and the quantum system. Photons carry energy that is determined by the wavelengths of the light that carries the photons. Objects that emit light with longer wavelengths, emit photons carrying less energy. In contrast to that, light with shorter wavelengths emit photons with more energy. When the photon interacts with a quantum system, it is therefore important to know what wavelength one is dealing with. A shorter wavelength will transfer more energy to the quantum system than longer wavelengths. On the atomic and molecular scale photoexcitation is the photoelectrochemical process of electron excitation by photon absorption, when the energy of the photon is too low to cause photoionization. The absorption of the photon takes place in accordance with Planck's quantum theory. Photoexcitation plays a role in photoisomerization and is exploited in different techniques: Dye-sensitized solar cells makes use of photoexcitation by exploiting it in cheaper inexpensive mass production solar cells. The solar cells rely on a large surface area in order to catch and absorb as many high energy photons as possible. Shorter wavelengths are more efficient for the energy conversion compared to longer wavelengths, since shorter wavelengths carry photons that are more energy rich. Light containing shorter wavelengths therefore cause a longer and less efficient conversion of energy in dye-sensitized solar cells. Photochemistry Luminescence Optically pumped lasers use photoexcitation in a way that the excited atoms in the lasers get an enormous direct-gap gain needed for the lasers. The density that is needed for the population inversion in the compound Ge, a material often used in lasers, must become 1020 cm−3, and this is acquired via photoexcitation. The photoexcitation causes the electrons in atoms to go to an excited state.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.