In calculus, the integral of the secant function can be evaluated using a variety of methods and there are multiple ways of expressing the antiderivative, all of which can be shown to be equivalent via trigonometric identities,
This formula is useful for evaluating various trigonometric integrals. In particular, it can be used to evaluate the integral of the secant cubed, which, though seemingly special, comes up rather frequently in applications.
The definite integral of the secant function starting from is the inverse Gudermannian function, For numerical applications, all of the above expressions result in loss of significance for some arguments. An alternative expression in terms of the inverse hyperbolic sine arsinh is numerically well behaved for real arguments
The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection, used for marine navigation with constant compass bearing.
Three common expressions for the integral of the secant,
are equivalent because
Proof: we can separately apply the tangent half-angle substitution to each of the three forms, and show them equivalent to the same expression in terms of Under this substitution and
First,
Second,
Third, using the tangent addition identity
So all three expressions describe the same quantity.
The conventional solution for the Mercator projection ordinate may be written without the absolute value signs since the latitude lies between and ,
Let
Therefore,
The integral of the secant function was one of the "outstanding open problems of the mid-seventeenth century", solved in 1668 by James Gregory. He applied his result to a problem concerning nautical tables. In 1599, Edward Wright evaluated the integral by numerical methods – what today we would call Riemann sums. He wanted the solution for the purposes of cartography – specifically for constructing an accurate Mercator projection.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, la fonction de Gudermann, appelée aussi parfois gudermannien, et notée gd, nommée en l'honneur de Christoph Gudermann, fait le lien entre la trigonométrie circulaire et la trigonométrie hyperbolique sans faire intervenir les nombres complexes. La fonction de Gudermann est définie sur l'ensemble des réels par : Le réel , appelé parfois gudermannien de , est relié à ce dernier par les relations : La dérivée de la fonction de Gudermann est donnée par .
En mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Explore la dérivation de l'équation de diffusion en utilisant des transformées de Fourier et discute de la signification des fonctions delta de Dirac dans l'analyse mathématique.
Explore modelocking dans les lasers ultrarapides, couvrant les relations de largeur d'impulsion, les impulsions chirped, et la conception de couplage de fibre.
We introduce a new numerical method for the time-dependent Maxwell equations on unstructured meshes in two space dimensions. This relies on the introduction of a new mesh, which is the barycentric-dual cellular complex of the starting simplicial mesh, and ...
Computing light reflection from rough surfaces is an important topic in computer graphics. Reflection models developed based on geometric optics fail to capture wave effects such as diffraction and interference, while existing models based on physical opti ...
ASSOC COMPUTING MACHINERY2023
Quasi-Newton (qN) techniques approximate the Newton step by estimating the Hessian using the so-called secant equations. Some of these methods compute the Hessian using several secant equations but produce non-symmetric updates. Other quasi-Newton schemes, ...