Résumé
L'électrolyse de l'eau est un procédé électrolytique qui décompose l'eau (HO) en dioxygène et dihydrogène gazeux grâce à un courant électrique. La cellule électrolytique est constituée de deux électrodes immergées dans un électrolyte (ici l'eau elle-même) et connectées aux pôles opposés de la source de courant continu. vignette|Schéma du voltamètre d'Hoffmann utilisé pour l'électrolyse de l'eau. vignette|Schéma fonctionnel de l’électrolyse. La première électrolyse de l'eau a été réalisée le par deux chimistes britanniques, William Nicholson (1753-1815) et Sir Anthony Carlisle (1768-1840), quelques semaines après l'invention de la première pile électrique (publication soumise le ) par Alessandro Volta. Onze ans auparavant J.R. Deiman et A. Paets van Troostwijk avaient déjà réalisé une électrolyse de l'eau au moyen d'une machine électrostatique et d'une bouteille de Leyde sans réussir à interpréter la réaction observée. Le courant électrique dissocie la molécule d'eau en ions hydroxyde HO et hydrogène H : dans la cellule électrolytique, les ions hydrogène acceptent des électrons à la cathode dans une réaction d'oxydoréduction en formant du dihydrogène gazeux , selon la réaction de réduction : 2 H + 2 e ⟶ , alors qu'une oxydation des ions hydroxyde — qui perdent donc des électrons — se produit à l'anode afin de « fermer » le circuit électrique (équilibre de la réaction chimique en charges) : 2 ⟶ + 4 H + 4 e, ce qui donne l'équation de décomposition par électrolyse suivante : 2 ⟶ 2 + . La quantité de dihydrogène gazeux produite est donc équivalente à deux fois la quantité de dioxygène. Selon la loi d'Avogadro, le volume récupéré de dihydrogène produit est aussi deux fois plus important que celui de dioxygène. La décomposition de l'eau en dihydrogène et dioxygène dans les conditions normales de température et de pression n'est pas favorisée thermodynamiquement, les potentiels standard des deux demi-réactions étant négatifs. Anode (oxydation) : 2 ⟶ + 4 H + 4 e E = . Cathode (réduction) : 4 H + 4 e ⟶ 2 E = .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
CH-421: Catalysis for energy storage
This course covers the fundamental and applied aspects of electrocatalysis related to renewable energy conversion and storage. The focus is on catalysis for hydrogen evolution, oxygen evolution, and C
ChE-407: Electrochemical engineering
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
ENG-410: Energy supply, economics and transition
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Afficher plus
Publications associées (470)
Concepts associés (25)
Hydrogénase
Les hydrogénases sont des enzymes qui catalysent de façon réversible la conversion des ions H+ (« protons ») en dihydrogène selon la réaction : 2H+ + 2e– = . Les sites actifs de ces enzymes sont de nature organométallique et diffèrent entre eux notamment par la nature des métaux qui les composent. Il existe ainsi trois classes d'hydrogénases : les hydrogénases [NiFe], les hydrogénases à fer seul [FeFe] et les hydrogénases précédemment appelées sans-métal, mais qui contiennent en fait un fer.
Oxyhydrogène
L'oxyhydrogène est un gaz composé d'hydrogène et d'oxygène en proportion molaire 2:1 en général. Le gaz peut être obtenu par électrolyse de l'eau. . Dans la pratique, un ratio de 4:1 ou 5:1 d'hydrogène et d'oxygène est nécessaire pour éviter une flamme oxydante. L'oxyhydrogène est brûlé lorsqu'il est amené à sa température d'auto-inflammation. Pour un mélange stœchiométrique à pression atmosphérique normale, l'auto-inflammation se produit à environ . L'énergie minimale nécessaire pour enflammer un tel mélange avec une étincelle est d'environ .
Production d'hydrogène
La production d'hydrogène, ou plus exactement de dihydrogène, est en grande majorité réalisée par extraction chimique depuis des combustibles fossiles, principalement du méthane, du charbon et de coupes pétrolières. La production de dihydrogène par cette voie présente l'avantage d'un coût compétitif, mais l'inconvénient d'être à l'origine d'émissions de non biogénique, qui dépassent généralement dix kilogrammes de par kilogramme d'hydrogène produit.
Afficher plus