Concept

Zéro puissance zéro

Zéro à la puissance zéro, noté 00, est une expression mathématique qui vaut 1. Plusieurs justifications existent à ce fait et sont décrites dans cet article. En revanche, en analyse, l'expression f(t)g(t) peut ne pas avoir comme limite 1 lorsque f(t) et g(t) tendent vers 0, ce qui a conduit certains auteurs à laisser l'expression 00 comme non définie. Ce point de vue est toutefois très minoritaire. De nombreuses formules impliquant des entiers naturels nécessitent de définir 00 = 1. Par exemple, si l'on voit b0 comme un produit vide, il faut le définir comme étant 1, même lorsque . En combinatoire, b0 est le nombre de 0-uplets dans un ensemble à b éléments ; il y en a exactement un, même si . De manière équivalente, l'interprétation de 00 dans la théorie des ensembles est le nombre de fonctions de l'ensemble vide dans l'ensemble vide ; il y a exactement une telle fonction, la fonction vide. De façon similaire, il est souvent nécessaire de définir 00 = 1 quand on travaille avec des polynômes. Un polynôme est une expression de la forme où est l'indéterminée et les coefficients sont des nombres réels (ou plus généralement des éléments d'un anneau). L'ensemble de ces polynômes est noté et forme lui-même un anneau. Le polynôme est l'unité de cet anneau, en d'autres termes c'est l'unique élément vérifiant la propriété suivante : multiplié avec n'importe quel autre polynôme donne simplement . Les polynômes peuvent être « évalués » en remplaçant X par n'importe quel nombre réel. Plus précisément, étant donné un nombre réel , il existe un unique morphisme d'anneaux tel que , appelé morphisme d'évaluation. Étant un morphisme d'anneaux, il satisfait alors . En résumé, pour toutes les spécialisations de x en un nombre réel, y compris x = 0. Cette perspective est importante pour de nombreuses identités polynomiales en combinatoire. Par exemple, la formule du binôme de Newton n'est valable pour que si . De même, la définition des anneaux de séries entières demandent que pour toute valeur de x. Ainsi, les identités comme et ne sont valables en x = 0 que si .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.