A Hindley–Milner (HM) type system is a classical type system for the lambda calculus with parametric polymorphism. It is also known as Damas–Milner or Damas–Hindley–Milner. It was first described by J. Roger Hindley and later rediscovered by Robin Milner. Luis Damas contributed a close formal analysis and proof of the method in his PhD thesis. Among HM's more notable properties are its completeness and its ability to infer the most general type of a given program without programmer-supplied type annotations or other hints. Algorithm W is an efficient type inference method in practice and has been successfully applied on large code bases, although it has a high theoretical complexity. HM is preferably used for functional languages. It was first implemented as part of the type system of the programming language ML. Since then, HM has been extended in various ways, most notably with type class constraints like those in Haskell. Type inference As a type inference method, Hindley–Milner is able to deduce the types of variables, expressions and functions from programs written in an entirely untyped style. Being scope sensitive, it is not limited to deriving the types only from a small portion of source code, but rather from complete programs or modules. Being able to cope with parametric types, too, it is core to the type systems of many functional programming languages. It was first applied in this manner in the ML programming language. The origin is the type inference algorithm for the simply typed lambda calculus that was devised by Haskell Curry and Robert Feys in 1958. In 1969, J. Roger Hindley extended this work and proved that their algorithm always inferred the most general type. In 1978, Robin Milner, independently of Hindley's work, provided an equivalent algorithm, Algorithm W. In 1982, Luis Damas finally proved that Milner's algorithm is complete and extended it to support systems with polymorphic references. parametric polymorphism In the simply typed lambda calculus, types T are either atomic type constants or function types of form .