Biomarker discovery is a medical term describing the process by which biomarkers are discovered. Many commonly used blood tests in medicine are biomarkers. There is interest in biomarker discovery on the part of the pharmaceutical industry; blood-test or other biomarkers could serve as intermediate markers of disease in clinical trials, and as possible drug targets. The way that these tests have been found can be viewed as biomarker discovery; however, their identification has primarily been made one at a time. Many well-known tests have been identified based on biological insight from the fields of physiology or biochemistry; therefore, only a few markers at a time have been considered. An example of biomarker discovery is the use of inulin to assess kidney function. From this process a naturally occurring molecule (creatinine) was discovered, enabling the same measurements to be made without insulin injections. The recent interest in biomarker discovery is spurred by new molecular biologic techniques, which promise to find relevant markers rapidly without detailed insight into the mechanisms of a disease. By screening many possible biomolecules at a time, a parallel approach can be attempted; genomics and proteomics are some technologies used in this process. Secretomics has also emerged as an important technology in the high-throughput search for biomarkers; however, significant technical difficulties remain. The identification of clinically significant protein biomarkers of phenotype and biological function is an expanding area of research which will extend diagnostic capabilities. Biomarkers for a number of diseases have recently emerged, including prostate specific antigen (PSA) for prostate cancer and C-reactive protein (CRP) for heart disease. The epigenetic clock which measures the age of cells/tissues/organs based on DNA methylation levels is arguably the most accurate genomic biomarker. Using biomarkers from easily assessable biofluids (e.g. blood and urine) is beneficial in evaluating the state of harder-to-reach tissues and organs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
BIO-487: Scientific project design in translational neurosciences
The goal of this course is to instruct the student how fundamental scientific knowledge, acquired through the study of fundamental disciplines, including biochemistry, genetics, pharmacology, physiolo

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.