Résumé

In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a mathematical model representing Earth. The most common model of a smoothed Earth is a rotating Earth ellipsoid of revolution (i.e., a spheroid). The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: based upon data from World Geodetic System 1984 (WGS-84), where is understood to be pointing 'down' in the local frame of reference. If it is desirable to model an object's weight on Earth as a function of latitude, one could use the following: where

=

= latitude, between −90° and +90° Neither of these accounts for changes in gravity with changes in altitude, but the model with the cosine function does take into account the centrifugal relief that is produced by the rotation of the Earth. For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being unaffected by the rotation. So the rotational component of change due to latitude (0.35%) is about twice as significant as the mass attraction change due to latitude (0.18%), but both reduce strength of gravity at the equator as compared to gravity at the poles. Note that for satellites, orbits are decoupled from the rotation of the Earth so the orbital period is not necessarily one day, but also that errors can accumulate over multiple orbits so that accuracy is important. For such problems, the rotation of the Earth would be immaterial unless variations with longitude are modeled. Also, the variation in gravity with altitude becomes important, especially for highly elliptical orbits.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Concepts associés (4)
Gravity of Earth
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm . In SI units this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s−2) or equivalently in newtons per kilogram (N/kg or N·kg−1).
Géodésie
vignette|Archives géodésiques de Munich, avec au premier plan une planche lithographique concernant les anciens Pays-Bas (région de polders où il était particulièrement important de connaître l'altitude des terres conquises sur la mer souvent situées sous le niveau marin). vignette|Exemple de « point géodésique » de référence marqué par un pilier et daté de 1855, à Ostende sur le littoral de Belgique.
Ellipsoïde de révolution
En mathématiques, un ellipsoïde de révolution, ou sphéroïde, est une surface de révolution obtenue par rotation dans l'espace d'une ellipse autour de l'un de ses axes de symétrie. Comme tout ellipsoïde, il s'agit d'une surface quadrique, c'est-à-dire qu'elle est décrite par une équation de degré 2 en chaque coordonnée dans un repère cartésien. L'expression peut aussi parfois désigner le volume borné délimité par cette surface, notamment pour décrire des objets physiques tels que la Terre ou des noyaux atomiques.
Afficher plus