Fournit une vue d'ensemble des concepts d'apprentissage profond, en se concentrant sur les données, l'architecture du modèle et les défis liés à la gestion de grands ensembles de données.
Couvre les méthodes de gradient de politique dans l'apprentissage du renforcement, en se concentrant sur les techniques d'optimisation et les applications pratiques comme le problème du poteau.
Explore la capacité des réseaux de neurones à apprendre des fonctionnalités et à faire des prédictions linéaires, en soulignant l'importance de la quantité de données pour une performance efficace.
Fournit un aperçu des méthodes de gradient de politique dans l'apprentissage par renforcement, en se concentrant sur le tour de log-vraisemblance et la transition de l'apprentissage par lots à l'apprentissage en ligne.
Discute des techniques avancées d'apprentissage par renforcement, en se concentrant sur des méthodes profondes et robustes, y compris des cadres d'acteur-critique et des stratégies d'apprentissage contradictoire.